Abstract

High-temperature latent heat thermal energy storage with metallic alloy phase change materials (PCMs) utilize the high latent heat and high thermal conductivity to gain a competitive edge over existing sensible and latent storage technologies. Novel macroporous latent heat storage units can be used to enhance the limiting convective heat transfer between the heat transfer fluid and the PCM to attain higher power density while maintaining high energy density. 3D monolithic percolating macroporous latent heat storage unit cells with random and ordered substructure topology were created using synthetic tomography data. Full 3D thermal computational fluid dynamics (CFD) simulations with phase change modeling was performed on 1000+ such structures using effective heat capacity method and temperature- and phase-dependent thermophysical properties. Design parameters, including transient thermal and flow characteristics, phase change time and pressure drop, were extracted as output scalars from the simulated charging process. As such structures cannot be parametrized meaningfully, a mesh-based Geodesic Convolutional Neural Network (GCNN) designed to perform direct convolutions on the surface and volume meshes of the macroporous structures was trained to predict the output scalars along with pressure, temperature, velocity distributions in the volume, and surface distributions of heat flux and shear stress. An Artificial Neural Network (ANN) using macroscopic properties—porosity, surface area, and two-point surface-void correlation functions—of the structures as inputs was used as a standard regressor for comparison. The GCNN exhibited high prediction accuracy of the scalars, outperforming the ANN and linear/exponential fits, owing to the disentangling property of GCNNs where predictions were improved by the introduction of correlated surface and volume fields. The trained GCNN behaves as a coupled CFD-heat transfer emulator predicting the volumetric distribution of temperature, pressure, velocity fields, and heat flux and shear stress distributions at the PCM–HTF interface. This deep learning based methodology offers a unique, generalized, and computationally competitive way to quickly predict phase change behavior of high power density macroporous structures in a few seconds and has the potential to optimize the percolating macroporous unit cells to application specific requirements.

References

1.
International Renewable Energy Agency (IRENA)
,
2019
, Renewables 2019, October 2019, Report No. 52.
2.
Kenisarin
,
M. M.
,
2010
, “
High-Temperature Phase Change Materials for Thermal Energy Storage
,”
Renewable Sustainable Energy Rev.
,
14
(
3
), pp.
955
970
.10.1016/j.rser.2009.11.011
3.
Binder
,
S.
, and
Haussener
,
S.
,
2020
, “
Design Guidelines for Al-12%Si Latent Heat Storage Encapsulations to Optimize Performance and Mitigate Degradation
,”
Appl. Surf. Sci.
,
505
(
3
), p.
143684
.10.1016/j.apsusc.2019.143684
4.
Mallya
,
N.
, and
Haussener
,
S.
,
2021
, “
Buoyancy-Driven Melting and Solidification Heat Transfer Analysis in Encapsulated Phase Change Materials
,”
Int. J. Heat Mass Transfer
,
164
(
1
), p.
120525
.10.1016/j.ijheatmasstransfer.2020.120525
5.
Mallya
,
N.
,
Suter
,
C.
,
Binder
,
S.
,
Barbato
,
M.
,
Ortona
,
A.
, and
Haussener
,
S.
,
2022
, “
Multi-Configuration Evaluation of a Megajoule-Scale High-Temperature Latent Thermal Energy Storage Test-Bed
,”
Appl. Therm. Eng.
,
214
(
9
), p.
118697
.10.1016/j.applthermaleng.2022.118697
6.
Rezaei
,
E.
,
Barbato
,
M.
, and
Gianella
,
S.
,
2019
, “
Pressure Drop and Convective Heat Transfer in Different SiSiC Structures Fabricated by Indirect Additive Manufacturing
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
12
, pp.
1
51
.10.1115/1.4045732
7.
Agyenim
,
F.
,
Hewitt
,
N.
,
Eames
,
P.
, and
Smyth
,
M.
,
2010
, “
A Review of Materials, Heat Transfer and Phase Change Problem Formulation for Latent Heat Thermal Energy Storage Systems (LHTESS)
,”
14
(
2
), pp.
615
628
.
8.
Ibrahim
,
N. I.
,
Al-Sulaiman
,
F. A.
,
Rahman
,
S.
,
Yilbas
,
B. S.
, and
Sahin
,
A. Z.
,
2017
, “
Heat Transfer Enhancement of Phase Change Materials for Thermal Energy Storage Applications: A Critical Review
,”
Renewable Sustainable Energy Rev.
,
74
(
7
), pp.
26
50
.10.1016/j.rser.2017.01.169
9.
Liu
,
L.
,
Su
,
D.
,
Tang
,
Y.
, and
Fang
,
G.
,
2016
, “
Thermal Conductivity Enhancement of Phase Change Materials for Thermal Energy Storage: A Review
,”
Renewable and Sustainable Energy Rev.
,
15
(
1
), pp.
24
46
.10.1016/j.rser.2016.04.057
10.
Mahdi
,
J. M.
,
Lohrasbi
,
S.
, and
Nsofor
,
E. C.
,
2019
, “
Hybrid Heat Transfer Enhancement for Latent-Heat Thermal Energy Storage Systems: A Review
,”
Int. J. Heat Mass Transfer
,
137
(
7
), pp.
630
649
.10.1016/j.ijheatmasstransfer.2019.03.111
11.
Xiao
,
X.
,
Zhang
,
P.
, and
Li
,
M.
,
2014
, “
Effective Thermal Conductivity of Open-Cell Metal Foams Impregnated With Pure Paraffin for Latent Heat Storage
,”
Int. J. Therm. Sci.
,
81
(
1
), pp.
94
105
.10.1016/j.ijthermalsci.2014.03.006
12.
Yang
,
J.
,
Yang
,
L.
,
Xu
,
C.
, and
Du
,
X.
,
2016
, “
Experimental Study on Enhancement of Thermal Energy Storage With Phase-Change Material
,”
Appl. Energy
,
169
(
5
), pp.
164
176
.10.1016/j.apenergy.2016.02.028
13.
Zhang
,
P.
,
Meng
,
Z. N.
,
Zhu
,
H.
,
Wang
,
Y. L.
, and
Peng
,
S. P.
,
2017
, “
Melting Heat Transfer Characteristics of a Composite Phase Change Material Fabricated by Paraffin and Metal Foam
,”
Appl. Energy
,
185
(
1
), pp.
1971
1983
.10.1016/j.apenergy.2015.10.075
14.
Gaedtke
,
M.
,
Abishek
,
S.
,
Mead-Hunter
,
R.
,
King
,
A. J.
,
Mullins
,
B. J.
,
Nirschl
,
H.
, and
Krause
,
M. J.
,
2020
, “
Total Enthalpy-Based Lattice Boltzmann Simulations of Melting in Paraffin/Metal Foam Composite Phase Change Materials
,”
Int. J. Heat Mass Transfer
,
155
(
7
), p.
119870
.10.1016/j.ijheatmasstransfer.2020.119870
15.
Siahpush
,
A.
,
O'Brien
,
J.
, and
Crepeau
,
J.
,
2008
, “
Phase Change Heat Transfer Enhancement Using Copper Porous Foam
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
130
(
8
), p.
082301
.10.1115/1.2928010
16.
Odabaee
,
M.
,
Hooman
,
K.
, and
Gurgenci
,
H.
,
2011
, “
Metal Foam Heat Exchangers for Heat Transfer Augmentation From a Cylinder in Cross-Flow
,”
Transp. Porous Media
,
86
(
3
), pp.
911
923
.10.1007/s11242-010-9664-y
17.
Chen
,
K.
,
Guo
,
L.
,
Xie
,
X.
, and
Liu
,
W.
,
2018
, “
Experimental Investigation on Enhanced Thermal Performance of Staggered Tube Bundles Wrapped With Metallic Foam
,”
Int. J. Heat Mass Transfer
,
122
(
7
), pp.
459
468
.10.1016/j.ijheatmasstransfer.2018.01.115
18.
Atal
,
A.
,
Wang
,
Y.
,
Harsha
,
M.
, and
Sengupta
,
S.
,
2016
, “
Effect of Porosity of Conducting Matrix on a Phase Change Energy Storage Device
,”
Int. J. Heat Mass Transfer
,
93
(
2
), pp.
9
16
.10.1016/j.ijheatmasstransfer.2015.09.033
19.
Wang
,
C.
,
Lin
,
T.
,
Li
,
N.
, and
Zheng
,
H.
,
2016
, “
Heat Transfer Enhancement of Phase Change Composite Material: Copper Foam/Paraffin
,”
Renewable Energy
,
96
(
10
), pp.
960
965
.10.1016/j.renene.2016.04.039
20.
Yang
,
X.
,
Feng
,
S.
,
Zhang
,
Q.
,
Chai
,
Y.
,
Jin
,
L.
, and
Lu
,
T. J.
,
2017
, “
The Role of Porous Metal Foam on the Unidirectional Solidification of Saturating Fluid for Cold Storage
,”
Appl. Energy
,
194
(
5
), pp.
508
521
.10.1016/j.apenergy.2016.09.050
21.
Abishek
,
S.
,
King
,
A. J.
,
Nadim
,
N.
, and
Mullins
,
B. J.
,
2018
, “
Effect of Microstructure on Melting in Metal-Foam/Paraffin Composite Phase Change Materials
,”
Int. J. Heat Mass Transfer
,
127
(
12
), pp.
135
144
.10.1016/j.ijheatmasstransfer.2018.07.054
22.
Dinesh
,
B. V. S.
, and
Bhattacharya
,
A.
,
2019
, “
Effect of Foam Geometry on Heat Absorption Characteristics of PCM-Metal Foam Composite Thermal Energy Storage Systems
,”
Int. J. Heat Mass Transfer
,
134
(
5
), pp.
866
883
.10.1016/j.ijheatmasstransfer.2019.01.095
23.
Rezaei
,
E.
,
Barbato
,
M.
,
Ortona
,
A.
, and
Haussener
,
S.
,
2020
, “
Design and Optimization of a High-Temperature Latent Heat Storage Unit
,”
Appl. Energy
,
261
(
3
), p.
114330
.10.1016/j.apenergy.2019.114330
24.
Kollep
,
M.
,
Konstantinou
,
G.
,
Madrid-Wolff
,
J.
,
Boniface
,
A.
,
Hagelüken
,
L.
,
Sasikumar
,
P. V. W.
,
Blugan
,
G.
,
Delrot
,
P.
,
Loterie
,
D.
,
Brugger
,
J.
, and
Moser
,
C.
,
2022
, “
Tomographic Volumetric Additive Manufacturing of Silicon Oxycarbide Ceramics
,”
Adv. Eng. Mater.
,
24
(
7
), p.
2101345
.10.1002/adem.202101345
25.
Buchanan
,
C.
, and
Gardner
,
L.
,
2019
, “
Metal 3D Printing in Construction: A Review of Methods, Research, Applications, Opportunities and Challenges
,”
Eng. Struct.
,
180
(
2
), pp.
332
348
.10.1016/j.engstruct.2018.11.045
26.
Xu
,
Y.
,
Ren
,
Q.
,
Zheng
,
Z. J.
, and
He
,
Y. L.
,
2017
, “
Evaluation and Optimization of Melting Performance for a Latent Heat Thermal Energy Storage Unit Partially Filled With Porous Media
,”
Appl. Energy
,
193
(
5
), pp.
84
95
.10.1016/j.apenergy.2017.02.019
27.
Levin
,
P. P.
,
Shitzer
,
A.
, and
Hetsroni
,
G.
,
2013
, “
Numerical Optimization of a PCM-Based Heat Sink With Internal Fins
,”
Int. J. Heat Mass Transfer
,
61
(
1
), pp.
638
645
.10.1016/j.ijheatmasstransfer.2013.01.056
28.
Hilbert
,
R.
,
Janiga
,
G.
,
Baron
,
R.
, and
Thévenin
,
D.
,
2006
, “
Multi-Objective Shape Optimization of a Heat Exchanger Using Parallel Genetic Algorithms
,”
Int. J. Heat Mass Transfer
,
49
(
15–16
), pp.
2567
2577
.10.1016/j.ijheatmasstransfer.2005.12.015
29.
Akolkar
,
A.
, and
Petrasch
,
J.
,
2011
, “
Tomography Based Pore-Level Optimization of Radiative Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
,
54
(
23–24
), pp.
4775
4783
.10.1016/j.ijheatmasstransfer.2011.06.017
30.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization - Theory, Methods, and Applications
,
Springer
, Berlin, Germany.
31.
Alexandersen
,
J.
,
Aage
,
N.
,
Andreasen
,
C. S.
, and
Sigmund
,
O.
,
2014
, “
Topology Optimisation for Natural Convection Problems
,”
Int. J. Numer. Methods Fluids
,
76
(
10
), pp.
699
721
.10.1002/fld.3954
32.
Dede
,
E. M.
,
Joshi
,
S. N.
, and
Zhou
,
F.
,
2015
, “
Topology optimization, additive layer manufacturing, and experimental testing of an air-cooled heat sink
,”
ASME
Paper No. IPACK2015-48027.10.1115/IPACK2015-48027
33.
Kaya
,
M.
, and
Hajimirza
,
S.
,
2021
, “
Nonparametric Design of Nanoparticles With Maximum Scattering Using Evolutionary Topology Optimization
,”
Int. J. Heat Mass Transfer
,
166
(
2
), p.
120738
.10.1016/j.ijheatmasstransfer.2020.120738
34.
Pizzolato
,
A.
,
Sharma
,
A.
,
Maute
,
K.
,
Sciacovelli
,
A.
, and
Verda
,
V.
,
2017
, “
Topology Optimization for Heat Transfer Enhancement in Latent Heat Thermal Energy Storage
,”
Int. J. Heat Mass Transfer
,
113
, pp.
875
888
.10.1016/j.ijheatmasstransfer.2017.05.098
35.
Pizzolato
,
A.
,
Sharma
,
A.
,
Maute
,
K.
,
Sciacovelli
,
A.
, and
Verda
,
V.
,
2017
, “
Design of Effective Fins for Fast PCM Melting and Solidification in Shell-and-Tube Latent Heat Thermal Energy Storage Through Topology Optimization
,”
Appl. Energy
,
208
(
12
), pp.
210
227
.10.1016/j.apenergy.2017.10.050
36.
Yao
,
Q. Y.
,
Zhao
,
C. Y.
,
Zhao
,
Y.
,
Wang
,
H.
, and
Li
,
W.
,
2021
, “
Topology Optimization for Heat Transfer Enhancement in Latent Heat Storage
,”
Int. J. Therm. Sci.
,
159
(
1
), p.
106578
.10.1016/j.ijthermalsci.2020.106578
37.
Augspurger
,
M.
,
Choi
,
K. K.
, and
Udaykumar
,
H. S.
,
2018
, “
Optimizing Fin Design for a PCM-Based Thermal Storage Device Using Dynamic Kriging
,”
Int. J. Heat Mass Transfer
,
121
(
6
), pp.
290
308
.10.1016/j.ijheatmasstransfer.2017.12.143
38.
Dammak
,
K.
, and
El Hami
,
A.
,
2021
, “
Thermal Reliability-Based Design Optimization Using Kriging Model of PCM Based Pin Fin Heat Sink
,”
Int. J. Heat Mass Transfer
,
166
(
2
), p.
120745
.10.1016/j.ijheatmasstransfer.2020.120745
39.
Ling
,
J.
, and
Templeton
,
J.
,
2015
, “
Evaluation of Machine Learning Algorithms for Prediction of Regions of High Reynolds Averaged Navier Stokes Uncertainty
,”
Phys. Fluids
,
27
(
8
), p.
085103
.10.1063/1.4927765
40.
Tompson
,
J.
,
Schlachter
,
K.
,
Sprechmann
,
P.
, and
Perlin
,
K.
,
2017
, “
Accelerating Eulerian Fluid Simulation With Convolutional Networks
,” Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, PMLR 70.
41.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
(
2
), pp.
686
707
.10.1016/j.jcp.2018.10.045
42.
Lucor
,
D.
,
Agrawal
,
A.
, and
Sergent
,
A.
,
2021
, “
Physics-Aware Deep Neural Networks for Surrogate Modeling of Turbulent Natural Convection
,” e-print arXiv:2103.03565v1.
43.
Wang
,
T.
,
Huang
,
Z.
,
Sun
,
Z.
, and
Xi
,
G.
,
2021
, “
Reconstruction of Natural Convection Within an Enclosure Using Deep Neural Network
,”
Int. J. Heat Mass Transfer
,
164
(
1
), p.
120626
.10.1016/j.ijheatmasstransfer.2020.120626
44.
Cai
,
S.
,
Wang
,
Z.
,
Wang
,
S.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2021
, “
Physics-Informed Neural Networks for Heat Transfer Problems
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
6
), p.
060801
.10.1115/1.4050542
45.
Kim
,
J.
, and
Lee
,
C.
,
2020
, “
Prediction of Turbulent Heat Transfer Using Convolutional Neural Networks
,”
J. Fluid Mech.
,
882
, p.
1
.10.1017/jfm.2019.814
46.
Guo
,
X.
,
Li
,
W.
, and
Iorio
,
F.
,
2016
, “
Convolutional Neural Networks for Steady Flow Approximation
,”
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD '16
, 2016, San Francisco, CA,
ACM Press
, pp.
481
490
.
47.
Chan
,
H.
,
Cherukara
,
M.
,
Loeffler
,
T. D.
,
Narayanan
,
B.
, and
Sankaranarayanan
,
S. K.
,
2020
, “
Machine Learning Enabled Autonomous Microstructural Characterization in 3D Samples
,”
Npj Comput. Mater.
,
6
(
1
), pp.
1
9
.10.1038/s41524-019-0267-z
48.
Rabbani
,
A.
,
Babaei
,
M.
,
Shams
,
R.
,
Wang
,
Y. D.
, and
Chung
,
T.
,
2020
, “
DeePore: A Deep Learning Workflow for Rapid and Comprehensive Characterization of Porous Materials
,”
Adv. Water Resour.
,
146
(
12
), p.
103787
.10.1016/j.advwatres.2020.103787
49.
Van Der Linden
,
J. H.
,
Narsilio
,
G. A.
, and
Tordesillas
,
A.
,
2016
, “
Machine Learning Framework for Analysis of Transport Through Complex Networks in Porous, Granular Media: A Focus on Permeability
,”
Phys. Rev. E
,
94
(
2
), p.
022904
.10.1103/PhysRevE.94.022904
50.
Tembely
,
M.
,
AlSumaiti
,
A. M.
, and
Alameri
,
W.
,
2020
, “
A Deep Learning Perspective on Predicting Permeability in Porous Media From Network Modeling to Direct Simulation
,”
Comput. Geosci.
,
24
(
4
)8, pp.
1541
1556
.10.1007/s10596-020-09963-4
51.
Tian
,
J. W.
,
Qi
,
C.
,
Peng
,
K.
,
Sun
,
Y.
, and
Mundher Yaseen
,
Z.
,
2022
, “
Improved Permeability Prediction of Porous Media by Feature Selection and Machine Learning Methods Comparison
,”
J. Comput. Civ. Eng.
,
36
(
2
), p.
04021040
.10.1061/(ASCE)CP.1943-5487.0000983
52.
Röding
,
M.
,
Ma
,
Z.
, and
Torquato
,
S.
,
2020
, “
Predicting Permeability Via Statistical Learning on Higher-Order Microstructural Information
,”
Sci. Rep.
,
10
(
1
), p.
12
.10.1038/s41598-020-72085-5
53.
Kamrava
,
S.
,
Tahmasebi
,
P.
, and
Sahimi
,
M.
,
2020
, “
Linking Morphology of Porous Media to Their Macroscopic Permeability by Deep Learning
,”
Transp. Porous Media
,
131
(
2
), pp.
427
448
.10.1007/s11242-019-01352-5
54.
Dai
,
X.
,
2021
, “
Numerical characterization and engineering of transport in morphologically complex heterogeneous media
,” Ph.D thesis,
EPFL
, Lausanne, Switzerland.
55.
Hajimirza
,
S.
, and
Sharadga
,
H.
,
2021
, “
Learning Thermal Radiative Properties of Porous Media From Engineered Geometric Features
,”
Int. J. Heat Mass Transfer
,
179
(
11
), p.
121668
.10.1016/j.ijheatmasstransfer.2021.121668
56.
Kang
,
H. H.
,
Kaya
,
M.
, and
Hajimirza
,
S.
,
2019
, “
A Data Driven Artificial Neural Network Model for Predicting Radiative Properties of Metallic Packed Beds
,”
J. Quant. Spectrosc. Radiat. Transfer
,
226
(
3
), pp.
66
72
.10.1016/j.jqsrt.2019.01.013
57.
Santos
,
J. E.
,
Xu
,
D.
,
Jo
,
H.
,
Landry
,
C. J.
,
Prodanović
,
M.
, and
Pyrcz
,
M. J.
,
2020
, “
PoreFlow-Net: A 3D Convolutional Neural Network to Predict Fluid Flow Through Porous Media
,”
Adv. Water Resour.
,
138
(
4
), p.
103539
.10.1016/j.advwatres.2020.103539
58.
Baqué
,
P.
,
Remelli
,
E.
,
Fleuret
,
F.
, and
Fua
,
P.
,
2018
, “
Geodesic Convolutional Shape Optimization
,” Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, PMLR 80.
59.
Schindelin
,
J.
,
Arganda-Carreras
,
I.
,
Frise
,
E.
,
Kaynig
,
V.
,
Longair
,
M.
,
Pietzsch
,
T.
,
Preibisch
,
S.
, et al.,
2012
, “
Fiji: An Open-Source Platform for Biological-Image Analysis
,”
Nat. Methods
9
, pp.
676
682
.10.1038/nmeth.2019
60.
Blender
Online
,
Community
,
2018
,
Blender - A 3D Modelling and Rendering Package
,
Blender Foundation, Blender Institute
,
Amsterdam
.
61.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), p.
620
.10.1063/1.168744
62.
Wolff
,
F.
, and
Viskanta
,
R.
,
1987
, “
Melting of a Pure Metal From a Vertical Wall
,”
Exp. Heat Transfer
,
1
(
1
), pp.
17
30
.10.1080/08916158708946328
63.
Poirier
,
D.
, and
Salcudean
,
M.
,
1988
, “
On Numerical Methods Used in Mathematical Modeling of Phase Change in Liquid Metals
,”
ASME J. Heat Transfer-Trans. ASME
,
110
(
3
), pp.
562
570
.10.1115/1.3250529
64.
Birchenall
,
C. E.
, and
Riechman
,
A. F.
,
1980
, “
Heat Storage in Eutectic Alloys
,”
Metall. Trans. A
,
11
(
8
), pp.
1415
1420
.10.1007/BF02653497
65.
Dietrich
,
B.
,
2013
, “
Heat Transfer Coefficients for Solid Ceramic sponges-Experimental Results and Correlation
,”
Int. J. Heat Mass Transfer
,
61
(
1
), pp.
627
637
.10.1016/j.ijheatmasstransfer.2013.02.019
66.
Sparrow
,
E. M.
, and
Loeffler
,
A. L.
,
1959
, “
Longitudinal Laminar Flow Between Cylinders Arranged in Regular Array
,”
AIChE J.
,
5
(
3
), pp.
325
330
.10.1002/aic.690050315
67.
Kyan
,
C. P.
,
Wasan
,
D. T.
,
Kintner
,
R. C.
, and
Wasan
,
D. T.
,
1970
, “
Flow of Single-Phase Fluids Through Fibrous Beds
,”
Ind. Eng. Chem. Fundam.
,
9
(
4
), pp.
596
603
.10.1021/i160036a012
68.
Kaviany
,
M.
,
1995
,
Principles of Heat Transfer in Porous Media, Vol. 53 of Mechanical Engineering Series
,
Springer
New York
.
69.
Haussener
,
S.
,
2010
, “
Tomography-based determination of effective heat and mass transport properties of complex multi-phase media
,” Ph.D. thesis, ETH Zürich, Zürich, Switzerland.
70.
Ma
,
Z.
, and
Torquato
,
S.
,
2018
, “
Precise Algorithms to Compute Surface Correlation Functions of Two-Phase Heterogeneous Media and Their Applications
,”
Phys. Rev. E
,
98
(
1
), p.
7
.10.1103/PhysRevE.98.013307
71.
Caruana
,
R.
,
1997
, “
Multitask Learning
,”
Mach. Learn.
,
28
(
1
), pp.
41
75
.10.1023/A:1007379606734
72.
Rifai
,
S.
,
Bengio
,
Y.
,
Courville
,
A.
,
Vincent
,
P.
, and
Mirza
,
M.
,
2012
, “
Disentangling Factors of Variation for Facial Expression Recognition
,”
Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics
, Vol.
7577
,
LNCS, Springer
,
Berlin, Heidelberg
, pp.
808
822
.
73.
Ramsundar
,
B.
,
Kearnes
,
S.
,
Riley
,
P.
,
Webster
,
D.
,
Konerding
,
D.
, and
Pande
,
V.
,
2015
, “
Massively Multitask Networks for Drug Discovery
,” e-print arXiv:1502.02072v1.
74.
Hassouna
,
M. S.
, and
Farag
,
A. A.
,
2007
, “
Multistencils Fast Marching Methods: A Highly Accurate Solution to the Eikonal Equation on Cartesian Domains
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
29
(
9
), pp.
1563
1574
.10.1109/TPAMI.2007.1154
75.
Karpathy
,
A.
,
2015
, “
The Unreasonable Effectiveness of Recurrent Neural Networks
,” pp.
1
28
, accessed Jan. 18, 2023, https://karpathy.github.io/2015/05/21/rnn-effectiveness
You do not currently have access to this content.