Abstract

This paper reports an investigation of the thermal performance of an energy storage heat sink incorporated with multiple phase change materials (PCMs). A six-cavity cylindrical heat sink heated at the base is chosen for the investigations with Docosane, n-Eicosane, and Tetracosane as candidate PCMs. The phase transition of PCMs has been visualized with a digital camera and three-dimensional numerical simulations. The results show that the latent heat exploitation process of PCMs in a heat sink with multiple PCMs is different from the single PCM heat sink, where the PCMs in all cavities melt distinctly rather at a time, thereby opening up windows for obtaining deeper insights that can lead to better performing heat sinks. A trained artificial neural network (ANN) with 78 representative heat sink configurations based on the arrangement of the PCMs in the cavities as input and charging and discharging times as output is used to swiftly drive the optimization engine. Finally, multi-objective optimization is performed using the artificial bee colony algorithm with simultaneous consideration of two conflicting objectives (i.e., maximizing charging cycle time and minimizing discharging cycle time) of the heat sink. From the optimization study, best performing nondominated Pareto optimal heat sink configurations are obtained and validated with the in-house experimental results. From the investigations, it is found that the heat sink configurations with multiple PCMs perform on par with the single PCMs in the charging process and show a superiority of up to 24% in discharging process over a heat sink with single PCMs in terms of time to reach set point temperature.

References

1.
Sharma
,
A.
,
Tyagi
,
V. V.
,
Chen
,
C. R.
, and
Buddhi
,
D.
,
2009
, “
Review on Thermal Energy Storage With Phase Change Materials and Applications
,”
Renewable Sustainable Energy Rev.
,
13
(
2
), pp.
318
345
.10.1016/j.rser.2007.10.005
2.
Sponagle
,
B.
,
Groulx
,
D.
, and
White
,
M. A.
,
2019
, “
Impact of Phase Change Material Transition Temperature on the Performance of Latent Heat Storage Thermal Control in Tablet Computers
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
12
), p.
122801
.10.1115/1.4044700
3.
Miers
,
C. S.
, and
Marconnet
,
A.
,
2021
, “
Experimental Investigation of Composite Phase Change Material Heat Sinks for Enhanced Passive Thermal Management
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
1
), p.
013001
.10.1115/1.4048620
4.
Baby
,
R.
, and
Balaji
,
C.
,
2014
, “
Thermal Performance of a PCM Heat Sink Under Different Heat Loads: An Experimental Study
,”
Int. J. Therm. Sci.
,
79
, pp.
240
249
.10.1016/j.ijthermalsci.2013.12.018
5.
Shatikian
,
V.
,
Ziskind
,
G.
, and
Letan
,
R.
,
2008
, “
Numerical Investigation of a PCM-Based Heat Sink With Internal Fins: Constant Heat Flux
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1488
1493
.10.1016/j.ijheatmasstransfer.2007.11.036
6.
Baby
,
R.
, and
Balaji
,
C.
,
2013
, “
Thermal Optimization of PCM Based Pin Fin Heat Sinks: An Experimental Study
,”
Appl. Therm. Eng.
,
54
(
1
), pp.
65
77
.10.1016/j.applthermaleng.2012.10.056
7.
Marri
,
G. K.
, and
Balaji
,
C.
,
2021
, “
Experimental and Numerical Investigations on the Effect of Porosity and PPI Gradients of Metal Foams on the Thermal Performance of a Composite Phase Change Material Heat Sink
,”
Int. J. Heat Mass Transfer
,
164
, p.
120454
.10.1016/j.ijheatmasstransfer.2020.120454
8.
Zhu
,
Z.-Q.
,
Huang
,
Y.-K.
,
Hu
,
N.
,
Zeng
,
Y.
, and
Fan
,
L.-W.
,
2018
, “
Transient Performance of a PCM-Based Heat Sink With a Partially Filled Metal Foam: Effects of the Filling Height Ratio
,”
Appl. Therm. Eng.
,
128
, pp.
966
972
.10.1016/j.applthermaleng.2017.09.047
9.
Qu
,
Z.
,
Li
,
W.
,
Wang
,
J.
, and
Tao
,
W.
,
2012
, “
Passive Thermal Management Using Metal Foam Saturated With Phase Change Material in a Heat Sink
,”
Int. Commun. Heat Mass Transfer
,
39
(
10
), pp.
1546
1549
.10.1016/j.icheatmasstransfer.2012.09.001
10.
Huang
,
Y.
,
Sun
,
Q.
,
Yao
,
F.
, and
Zhang
,
C.
,
2021
, “
Experimental Study on the Thermal Performance of a Finned Metal Foam Heat Sink With Phase Change Material
,”
Heat Transfer Eng.
,
42
(
7
), pp.
579
591
.10.1080/01457632.2020.1716482
11.
Colla
,
L.
,
Ercole
,
D.
,
Fedele
,
L.
,
Mancin
,
S.
,
Manca
,
O.
, and
Bobbo
,
S.
,
2017
, “
Nano-Phase Change Materials for Electronics Cooling Applications
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
139
(
5
), p.
052406
.10.1115/1.4036017
12.
Hu
,
N.
,
Li
,
Z.-R.
,
Zhang
,
R.-H.
,
Liu
,
J.
, and
Fan
,
L.-W.
,
2021
, “
An Experimental Investigation of Constrained Melting Heat Transfer of Nano-Enhanced Phase Change Materials in a Horizontal Cylindrical Capsule Using Thermochromic Liquid Crystal Thermography
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
1
), p.
012401
.10.1115/1.4048471
13.
Srikanth
,
R.
,
Nemani
,
P.
, and
Balaji
,
C.
,
2015
, “
Multi-Objective Geometric Optimization of a PCM Based Matrix Type Composite Heat Sink
,”
Appl. Energy
,
156
, pp.
703
714
.10.1016/j.apenergy.2015.07.046
14.
Wang
,
H.
,
Wang
,
F.
,
Li
,
Z.
,
Tang
,
Y.
,
Yu
,
B.
, and
Yuan
,
W.
,
2016
, “
Experimental Investigation on the Thermal Performance of a Heat Sink Filled With Porous Metal Fiber Sintered Felt/Paraffin Composite Phase Change Material
,”
Appl. Energy
,
176
, pp.
221
232
.10.1016/j.apenergy.2016.05.050
15.
Weng
,
Y.-C.
,
Cho
,
H.-P.
,
Chang
,
C.-C.
, and
Chen
,
S.-L.
,
2011
, “
Heat Pipe With PCM for Electronic Cooling
,”
Appl. Energy
,
88
(
5
), pp.
1825
1833
.10.1016/j.apenergy.2010.12.004
16.
Behi
,
H.
,
Ghanbarpour
,
M.
, and
Behi
,
M.
,
2017
, “
Investigation of PCM-Assisted Heat Pipe for Electronic Cooling
,”
Appl. Therm. Eng.
,
127
, pp.
1132
1142
.10.1016/j.applthermaleng.2017.08.109
17.
Kumar Marri
,
G.
, and
Balaji
,
C.
,
2021
, “
Experimental and Numerical Investigations on a Phase Change Material Based Heat Sink With Symbiotically Joined Heat Pipe
,”
Heat Transfer Eng.
,
42
(
1
), pp.
23
40
.10.1080/01457632.2019.1685241
18.
Marri
,
G. K.
, and
Balaji
,
C.
,
2022
, “
Effect of Phase Change Temperatures and Orientation on the Thermal Performance of a Miniaturized PCM Heat Sink Coupled Heat Pipe
,”
Exp. Heat Transfer
, epub, pp.
1
23
.10.1080/08916152.2022.2073487
19.
Gong
,
Z.-X.
, and
Mujumdar
,
A. S.
,
1996
, “
Cyclic Heat Transfer in a Novel Storage Unit of Multiple Phase Change Materials
,”
Appl. Therm. Eng.
,
16
(
10
), pp.
807
815
.10.1016/1359-4311(95)00088-7
20.
Gong
,
Z.-X.
, and
Mujumdar
,
A. S.
,
1996
, “
Enhancement of Energy Charge-Discharge Rates in Composite Slabs of Different Phase Change Materials
,”
Int. J. Heat Mass Transfer
,
39
(
4
), pp.
725
733
.10.1016/0017-9310(95)00179-4
21.
Fang
,
M.
, and
Chen
,
G.
,
2007
, “
Effects of Different Multiple PCMS on the Performance of a Latent Thermal Energy Storage System
,”
Appl. Therm. Eng.
,
27
(
5–6
), pp.
994
1000
.10.1016/j.applthermaleng.2006.08.001
22.
Mozafari
,
M.
,
Lee
,
A.
, and
Mohammadpour
,
J.
,
2021
, “
Thermal Management of Single and Multiple PCMs Based Heat Sinks for Electronics Cooling
,”
Therm. Sci. Eng. Prog.
,
23
, p.
100919
.10.1016/j.tsep.2021.100919
23.
Mahdi
,
J. M.
,
Mohammed
,
H. I.
, and
Talebizadehsardari
,
P.
,
2021
, “
A New Approach for Employing Multiple PCMs in the Passive Thermal Management of Photovoltaic Modules
,”
Sol. Energy
,
222
, pp.
160
174
.10.1016/j.solener.2021.04.044
24.
Girish Kumar
,
M.
,
Srikanth
,
R.
, and
Balaji
,
C.
,
2018
, “
Experimental Investigation on the Thermal Performance of a PCM Based Cylindrical Heat Sink With Multiple PCMs
,” International Heat Transfer Conference Digital Library,
Begel House
, China National Convention Center, Beijing, China, Aug. 10–15, Paper No.
IHTC22999
.https://www.ihtcdigitallibrary.com/conferences/ihtc16,43c1002541586ecd,57c4f21871967933.html
25.
Al Siyabi
,
I.
,
Khanna
,
S.
,
Mallick
,
T.
, and
Sundaram
,
S.
,
2018
, “
Multiple Phase Change Material (PCM) Configuration for PCM-Based Heat Sinks—An Experimental Study
,”
Energies
,
11
(
7
), p.
1629
.10.3390/en11071629
26.
Mohammed
,
A. G.
,
Elfeky
,
K. E.
, and
Wang
,
Q.
,
2021
, “
Thermal Management Evaluation of li-Ion Battery Employing Multiple Phase Change Materials Integrated Thin Heat Sinks for Hybrid Electric Vehicles
,”
J. Power Sources
,
516
, p.
230680
.10.1016/j.jpowsour.2021.230680
27.
Hu
,
Z.
,
Li
,
A.
,
Gao
,
R.
, and
Yin
,
H.
,
2015
, “
Enhanced Heat Transfer for Pcm Melting in the Frustum-Shaped Unit With Multiple Pcms
,”
J. Therm. Anal. Calorim.
,
120
(
2
), pp.
1407
1416
.10.1007/s10973-014-4370-6
28.
Gong
,
Z.-X.
, and
Mujumdar
,
A. S.
,
1997
, “
Thermodynamic Optimization of the Thermal Process in Energy Storage Using Multiple Phase Change Materials
,”
Appl. Therm. Eng.
,
17
(
11
), pp.
1067
1083
.10.1016/S1359-4311(97)00012-4
29.
Bar
,
N.
,
Bandyopadhyay
,
T. K.
,
Biswas
,
M. N.
, and
Das
,
S. K.
,
2010
, “
Prediction of Pressure Drop Using Artificial Neural Network for Non-Newtonian Liquid Flow Through Piping Components
,”
J. Pet. Sci. Eng.
,
71
(
3–4
), pp.
187
194
.10.1016/j.petrol.2010.02.001
30.
Diaz
,
G.
,
Sen
,
M.
,
Yang
,
K.
, and
McClain
,
R. L.
,
1999
, “
Simulation of Heat Exchanger Performance by Artificial Neural Networks
,”
HvacR Res.
,
5
(
3
), pp.
195
208
.10.1080/10789669.1999.10391233
31.
Marler
,
R. T.
, and
Arora
,
J. S.
,
2004
, “
Survey of Multi-Objective Optimization Methods for Engineering
,”
Struct. Multidiscip. Optim.
,
26
(
6
), pp.
369
395
.10.1007/s00158-003-0368-6
32.
Gupta
,
D.
,
Saha
,
P.
, and
Roy
,
S.
,
2022
, “
Multi-Objective Optimization of the Perforated Micro Pin-Fin Heat Sink Using Non-Dominated Sorting Genetic Algorithm-II Coupled With CFD Simulation
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
144
(
9
), p.
093301
.10.1115/1.4054761
33.
Unlersen
,
M. F.
,
Balci
,
S.
, and
Sabanci
,
K.
,
2021
, “
Thermal Behavior Estimation of the Power Switches With an Empirical Formulation Optimized by Artificial Bee Colony Algorithm
,”
Microelectron. Reliab.
,
127
, p.
114404
.10.1016/j.microrel.2021.114404
34.
Afzal
,
A.
,
Samee
,
A. M.
,
Jilte
,
R.
,
Islam
,
M. T.
,
Manokar
,
A. M.
, and
Razak
,
K. A.
,
2021
, “
Battery Thermal Management: An Optimization Study of Parallelized Conjugate Numerical Analysis Using Cuckoo Search and Artificial Bee Colony Algorithm
,”
Int. J. Heat Mass Transfer
,
166
, p.
120798
.10.1016/j.ijheatmasstransfer.2020.120798
35.
Delgarm
,
N.
,
Sajadi
,
B.
, and
Delgarm
,
S.
,
2016
, “
Multi-Objective Optimization of Building Energy Performance and Indoor Thermal Comfort: A New Method Using Artificial Bee Colony (ABC)
,”
Energy Build.
,
131
, pp.
42
53
.10.1016/j.enbuild.2016.09.003
36.
ANSYS
,
2013
, “
Academic Research, Release 15.0, Help System, Ansys Fluent Theory Guide
,”
ANSYS
, Canonsburg, PA.
37.
Marri
,
G. K.
, and
Balaji
,
C.
,
2022
, “
Liquid Crystal Thermography Based Study on Melting Dynamics and the Effect of Mushy Zone Constant in Numerical Modeling of Melting of a Phase Change Material
,”
Int. J. Therm. Sci.
,
171
, p.
107176
.10.1016/j.ijthermalsci.2021.107176
38.
Karaboga
,
D.
, and
Akay
,
B.
,
2009
, “
A Comparative Study of Artificial Bee Colony Algorithm
,”
Appl. Math. Comput.
,
214
(
1
), pp.
108
132
.10.1016/j.amc.2009.03.090
39.
Marri
,
G. K.
,
Srikanth
,
R.
, and
Balaji
,
C.
,
2020
, “
Effect of Phase Change and Ambient Temperatures on the Thermal Performance of a Solid-Liquid Phase Change Material Based Heat Sinks
,”
J. Energy Storage
,
30
, p.
101327
.10.1016/j.est.2020.101327
You do not currently have access to this content.