Abstract

Analysis of the energy transport in thermal microdevices modeled as a porous medium under periodic heat loads is conducted using integral transforms. Coupled eigenvalue problems are employed and a single set of coupled ordinary differential equations conveying all information on the temperature fields in both the solid and fluid phases are reached, allowing for a relatively straightforward treatment of the local thermal nonequilibrium (LTNE) formulation. This characteristic proved instrumental in finding out that the local thermal equilibrium (LTE) hypothesis is inadequate for unsteady problems. The solid phase is shown to have a significant role on inducing thermal lag in the fluid, which may be severe, depending on the dimensions and operational conditions. In general, devices comprised of larger fractions of solid material and with poorer heat transfer characteristics are more prone to having larger thermal lag along them. These conclusions may be relevant to a wide range of applications such as electronics cooling, battery thermal management, solar energy harvesting, among others.

References

1.
Kandlikar
,
S. G.
,
Garimella
,
S.
,
Li
,
D.
,
Colin
,
S.
, and
King
,
M. R.
,
2006
,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier
,
Oxford, UK
.
2.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
3.
Sharma
,
C. S.
,
Tiwari
,
M. K.
,
Zimmermann
,
S.
,
Brunschwiler
,
T.
,
Schlottig
,
G.
,
Michel
,
B.
, and
Poulikakos
,
D.
,
2015
, “
Energy Efficient Hotspot-Targeted Embedded Liquid Cooling of Electronics
,”
Appl. Energy
,
138
, pp.
414
422
.10.1016/j.apenergy.2014.10.068
4.
Royne
,
A.
,
Dey
,
C. J.
, and
Mills
,
D. R.
,
2005
, “
Cooling of Photovoltaic Cells Under Concentrated Illumination: A Critical Review
,”
Sol. Energy Mater. Sol. Cells
,
86
(
4
), pp.
451
483
.10.1016/j.solmat.2004.09.003
5.
Zimmermann
,
S.
,
Meijer
,
I.
,
Tiwari
,
M. K.
,
Paredes
,
S.
,
Michel
,
B.
, and
Poulikakos
,
D.
,
2012
, “
Aquasar: A Hot Water Cooled Data Center With Direct Energy Reuse
,”
Energy
,
43
(
1
), pp.
237
245
.10.1016/j.energy.2012.04.037
6.
Yakomaskin
,
A. A.
,
Afanasiev
,
V. N.
,
Zubkov
,
N. N.
, and
Morskoy
,
D. N.
,
2013
, “
Investigation of Heat Transfer in Evaporator of Microchannel Loop Heat Pipe
,”
ASME J. Heat Transfer
,
135
(
10
), p.
101006
.10.1115/1.4024502
7.
Nagayama
,
G.
,
Gyotoku
,
S.
, and
Tsuruta
,
T.
,
2018
, “
Thermal Performance of Flat Micro Heat Pipe With Converging Microchannels
,”
Int. J. Heat Mass Transfer
,
122
, pp.
375
382
.10.1016/j.ijheatmasstransfer.2018.01.131
8.
Horvat
,
A.
, and
Catton
,
I.
,
2003
, “
Numerical Technique for Modeling Conjugate Heat Transfer in an Electronic Device Heat Sink
,”
Int. J. Heat Mass Transfer
,
46
(
12
), pp.
2155
2168
.10.1016/S0017-9310(02)00532-X
9.
Sbutega
,
K.
, and
Catton
,
I.
,
2013
, “
Efficient Hydraulic and Thermal Analysis of Heat Sinks Using Volume Averaging Theory and Galerkin Methods
,”
Multiphase Sci. Technol.
,
25
(
2–4
), pp.
311
338
.10.1615/MultScienTechn.v25.i2-4.120
10.
Sbutega
,
K.
, and
Catton
,
I.
,
2013
, “
Application of Fourier-Galerkin Method to Volume Averaging Theory Based Model of Heat Sinks
,”
ASME
Paper No. IMECE2013-65244.10.1115/IMECE2013-65244
11.
Sbutega
,
K.
, and
Catton
,
I.
,
2016
, “
Galerkin Method Solution of a Volume-Averaged Model for Efficient Conjugate Heat Transfer Analysis
,”
Numer. Heat Transfer, Part B
,
69
(
1
), pp.
1
25
.10.1080/10407790.2015.1068029
12.
Bejan
,
A.
,
2004
, “
Designed Porous Media: Maximal Heat Transfer Density at Decreasing Length Scales
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
3073
3083
.10.1016/j.ijheatmasstransfer.2004.02.025
13.
Lisboa
,
K. M.
,
Zotin
,
J. L. Z.
,
Naveira-Cotta
,
C. P.
, and
Cotta
,
R. M.
,
2021
, “
Leveraging the Entropy Generation Minimization and Designed Porous Media for the Optimization of Heat Sinks Employed in Low-Grade Waste Heat Harvesting
,”
Int. J. Heat Mass Transfer
,
181
, p.
121850
.10.1016/j.ijheatmasstransfer.2021.121850
14.
Kaviany
,
M.
,
1985
, “
Laminar Flow Through a Porous Channel Bounded by Isothermal Parallel Plates
,”
Int. J. Heat Mass Transfer
,
28
(
4
), pp.
851
858
.10.1016/0017-9310(85)90234-0
15.
Poulikakos
,
D.
, and
Renken
,
K.
,
1987
, “
Forced Convection in a Channel Filled With Porous Medium, Including the Effects of Flow Inertia, Variable Porosity, and Brinkman Friction
,”
ASME J. Heat Transfer
,
109
(
4
), pp.
880
888
.10.1115/1.3248198
16.
Vafai
,
K.
, and
Kim
,
S. J.
,
1989
, “
Forced Convection in a Channel Filled With a Porous Medium: An Exact Solution
,”
ASME J. Heat Transfer
,
111
(
4
), pp.
1103
1106
.10.1115/1.3250779
17.
Quintard
,
M.
,
Kaviany
,
M.
, and
Whitaker
,
S.
,
1997
, “
Two-Medium Treatment of Heat Transfer in Porous Media: Numerical Results for Effective Properties
,”
Adv. Water Resour.
,
20
(
2–3
), pp.
77
94
.10.1016/S0309-1708(96)00024-3
18.
Nield
,
D. A.
,
1998
, “
Effects of Local Thermal Nonequilibrium in Steady Convective Processes in a Saturated Porous Medium: Forced Convection in a Channel
,”
J. Porous Media
,
1
, pp.
181
186
.
19.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
1999
, “
Local Thermal Nonequilibrium Effects in Forced Convection in a Porous Medium Channel: A Conjugate Problem
,”
Int. J. Heat Mass Transfer
,
42
(
17
), pp.
3245
3252
.10.1016/S0017-9310(98)00386-X
20.
Vadasz
,
P.
,
2005
, “
Explicit Conditions for Local Thermal Equilibrium in Porous Media Heat Conduction
,”
Transp. Porous Media
,
59
(
3
), pp.
341
355
.10.1007/s11242-004-1801-z
21.
Mahmoudi
,
Y.
, and
Karimi
,
N.
,
2014
, “
Numerical Investigation of Heat Transfer Enhancement in a Pipe Partially Filled With a Porous Material Under Local Thermal Non-Equilibrium Condition
,”
Int. J. Heat Mass Transfer
,
68
, pp.
161
173
.10.1016/j.ijheatmasstransfer.2013.09.020
22.
Mahmoudi
,
Y.
,
Karimi
,
N.
, and
Mazaheri
,
K.
,
2014
, “
Analytical Investigation of Heat Transfer Enhancement in a Channel Partially Filled With a Porous Material Under Local Thermal Non-Equilibrium Condition: Effects of Different Thermal Boundary Conditions at the Porous-Fluid Interface
,”
Int. J. Heat Mass Transfer
,
70
, pp.
875
891
.10.1016/j.ijheatmasstransfer.2013.11.048
23.
Kakaç
,
S.
,
Li
,
W.
, and
Cotta
,
R. M.
,
1990
, “
Unsteady Laminar Forced Convection in Ducts With Periodic Variation of Inlet Temperature
,”
ASME J. Heat Transfer
,
112
(
4
), pp.
913
920
.10.1115/1.2910499
24.
Cheroto
,
S.
,
Mikhailov
,
M. D.
,
Kakaç
,
S.
, and
Cotta
,
R. M.
,
1999
, “
Periodic Laminar Forced Convection: Solution Via Symbolic Computation and Integral Transforms
,”
Int. J. Therm. Sci.
,
38
(
7
), pp.
613
621
.10.1016/S0035-3159(99)80041-5
25.
Kośny
,
J.
,
Biswas
,
K.
,
Miller
,
W.
, and
Kriner
,
S.
,
2012
, “
Field Thermal Performance of Naturally Ventilated Solar Roof With PCM Heat Sink
,”
Sol. Energy
,
86
(
9
), pp.
2504
2514
.10.1016/j.solener.2012.05.020
26.
Jim
,
C. Y.
,
2014
, “
Heat-Sink Effect and Indoor Warming Imposed by Tropical Extensive Green Roof
,”
Ecol. Eng.
,
62
, pp.
1
12
.10.1016/j.ecoleng.2013.10.022
27.
Onda
,
K.
,
Ohshima
,
T.
,
Nakayama
,
M.
,
Fukuda
,
K.
, and
Araki
,
T.
,
2006
, “
Thermal Behavior of Small Lithium-Ion Battery During Rapid Charge and Discharge Cycles
,”
J. Power Sources
,
158
(
1
), pp.
535
542
.10.1016/j.jpowsour.2005.08.049
28.
Kim
,
J.
,
Oh
,
J.
, and
Lee
,
H.
,
2019
, “
Review on Battery Thermal Management System for Electric Vehicles
,”
Appl. Therm. Eng.
,
149
, pp.
192
212
.10.1016/j.applthermaleng.2018.12.020
29.
Bernardo
,
L. R.
,
Perers
,
B.
,
Håkansson
,
H.
, and
Karlsson
,
B.
,
2011
, “
Performance Evaluation of Low Concentrating Photovoltaic/Thermal Systems: A Case Study From Sweden
,”
Sol. Energy
,
85
(
7
), pp.
1499
1510
.10.1016/j.solener.2011.04.006
30.
Muthu
,
G.
,
Shanmugam
,
S.
, and
Veerappan
,
A. R.
,
2014
, “
Solar Parabolic Dish Thermoelectric Generator With Acrylic Cover
,”
Energy Procedia
,
54
, pp.
2
10
.10.1016/j.egypro.2014.07.244
31.
Cotta
,
R. M.
,
1990
, “
Hybrid Numerical-Analytical Approach to Nonlinear Diffusion Problems
,”
Numer. Heat Transfer, Part B
,
17
(
2
), pp.
217
226
.10.1080/10407799008961740
32.
Cotta
,
R. M.
,
1993
,
Integral Transforms in Computational Heat and Fluid Flow
,
CRC Press
,
Boca Raton, FL
.
33.
Mikhailov
,
M. D.
, and
Ozisik
,
M. N.
,
1984
,
Unified Analysis and Solutions of Heat and Mass Diffusion
,
Wiley
,
New York
.
34.
Aperecido
,
J. B.
,
Cotta
,
R. M.
, and
Özişik
,
M. N.
,
1989
, “
Analytical Solutions to Two-Dimensional Diffusion Type Problems in Irregular Geometries
,”
J. Franklin Inst.
,
326
(
3
), pp.
421
434
.10.1016/0016-0032(89)90021-5
35.
Sphaier
,
L. A.
, and
Cotta
,
R. M.
,
2002
, “
Analytical and Hybrid Solutions of Diffusion Problems Within Arbitrarily Shaped Regions Via Integral Transforms
,”
Comput. Mech.
,
29
(
3
), pp.
265
276
.10.1007/s00466-002-0339-6
36.
Pinheiro
,
I. F.
,
Sphaier
,
L. A.
, and
Knupp
,
D. C.
,
2019
, “
Integral Transform Solution of Eigenvalue Problems Within Irregular Geometries: Comparative Analysis of Different Methodologies
,”
Numer. Heat Transfer, Part B
,
76
(
6
), pp.
329
350
.10.1080/10407790.2019.1665444
37.
Pinheiro
,
I. F.
,
Puccetti
,
G.
,
Morini
,
G. L.
, and
Sphaier
,
L. A.
,
2021
, “
Integral Transform Analysis of Microchannel Fluid Flow: Irregular Geometry Estimation Using Velocimetry Data
,”
Appl. Math. Modell.
,
90
, pp.
943
954
.10.1016/j.apm.2020.09.035
38.
Serfaty
,
R.
, and
Cotta
,
R. M.
,
1992
, “
Hybrid Analysis of Transient Nonlinear Convection-Diffusion Problems
,”
Int. J. Numer. Methods Heat Fluid Flow
,
2
(
1
), pp.
55
62
.10.1108/eb017479
39.
Cotta
,
R. M.
,
Knupp
,
D. C.
,
Naveira-Cotta
,
C. P.
,
Sphaier
,
L. A.
, and
Quaresma
,
J. N. N.
,
2013
, “
Unified Integral Transforms Algorithm for Solving Multidimensional Nonlinear Convection-Diffusion Problems
,”
Numer. Heat Transfer, Part A
,
63
, pp.
1
27
.10.1080/10407782.2013.756763
40.
Pinheiro
,
I. F.
,
Sphaier
,
L. A.
, and
Alves
,
L. S. B.
,
2018
, “
Integral Transform Solution of Integro-Differential Equations in Conduction-Radiation Problems
,”
Numer. Heat Transfer, Part A
,
73
(
2
), pp.
94
114
.10.1080/10407782.2017.1421359
41.
Pontes
,
P. C.
,
Costa Junior
,
J. M.
,
Naveira-Cotta
,
C. P.
, and
Tiwari
,
M. K.
,
2021
, “
Approximation Error Model (AEM) Approach With Hybrid Methods in the Forward-Inverse Analysis of the Transesterification Reaction in 3D-Microreactors
,”
Inverse Probl. Sci. Eng.
,
29
(
11
), pp.
1586
1612
.10.1080/17415977.2020.1870973
42.
Perez-Guerrero
,
J. S.
, and
Cotta
,
R. M.
,
1992
, “
Integral Transform Solution for the Lid-Driven Cavity Flow Problem in Streamfunction-Only Formulation
,”
Int. J. Numer. Methods Fluids
,
15
(
4
), pp.
399
409
.10.1002/fld.1650150403
43.
Lisboa
,
K. M.
, and
Cotta
,
R. M.
,
2018
, “
Hybrid Integral Transforms for Flow Development in Ducts Partially Filled With Porous Media
,”
Proc. R. Soc. A
,
474
, pp.
1
20
.10.1098/rspa.2017.0637
44.
Cruz
,
C. C. S.
,
Pereira
,
L. M.
,
Macedo
,
E. N.
,
Quaresma
,
J. N. N.
, and
Cotta
,
R. M.
,
2021
, “
Integral Transform Solution of Swirling Laminar Flows in Cylindrical Cavities With Rotating End Walls
,”
J. Braz. Soc. Mech. Sci. Eng.
,
43
, p.
401
.10.1007/s40430-021-03108-z
45.
Cotta
,
R. M.
,
Lisboa
,
K. M.
,
Curi
,
M. F.
,
Balabani
,
S.
,
Quaresma
,
J. N. N.
,
Pérez Guerrero
,
J. S.
,
Macêdo
,
E. N.
, and
Amorim
,
N. S.
,
2019
, “
A Review of Hybrid Integral Transform Solutions in Fluid Flow Problems With Heat or Mass Transfer and Under Navier–Stokes Equations Formulations
,”
Numer. Heat Transfer, Part B
,
76
(
2
), pp.
60
87
.10.1080/10407790.2019.1642715
46.
Alves
,
L. S. B.
, and
Cotta
,
R. M.
,
2000
, “
Transient Natural Convection Inside Porous Cavities: Hybrid Numerical-Analytical Solution and Mixed Symbolic-Numerical Computation
,”
Numer. Heat Transfer, Part A
,
38
(
1
), pp.
89
110
.10.1080/10407780050134983
47.
Santos
,
B. M.
,
,
L. S. S.
, and
Su
,
J.
,
2022
, “
Natural Convection in a Horizontal Annular Sector Containing Heat-Generating Porous Medium
,”
Int. J. Numer. Methods Heat Fluid Flow
,
32
(
1
), pp.
387
403
.10.1108/HFF-01-2021-0002
48.
Hirata
,
S. C.
,
Goyeau
,
B.
,
Gobin
,
D.
,
Chandesris
,
M.
, and
Jamet
,
D.
,
2009
, “
Stability of Natural Convection in Superposed Fluid and Porous Layers: Equivalence of the One- and Two-Domain Approaches
,”
Int. J. Heat Mass Transfer
,
52
(
1–2
), pp.
533
536
.10.1016/j.ijheatmasstransfer.2008.07.045
49.
Lisboa
,
K. M.
,
Zotin
,
J. L. Z.
, and
Cotta
,
R. M.
,
2021
, “
Hybrid Solutions for Thermally Developing Flows in Channels Partially Filled With Porous Media
,”
Numer. Heat Transfer, Part B
,
79
(
4
), pp.
189
215
.10.1080/10407790.2020.1819700
50.
Wolfram
,
S.
,
2021
,
Wolfram Mathematica 13.0
,
Wolfram Research
,
Champaign, IL
.
51.
Alazmi
,
B.
, and
Vafai
,
K.
,
2002
, “
Constant Wall Heat Flux Boundary Conditions in Porous Media Under Local Thermal Non-Equilibrium Conditions
,”
Int. J. Heat Mass Transfer
,
45
(
15
), pp.
3071
3087
.10.1016/S0017-9310(02)00044-3
52.
Almeida
,
A. R.
, and
Cotta
,
R. M.
,
1996
, “
A Comparison of Convergence Acceleration Schemes for Eigenfunction Expansions of Partial Differential Equations
,”
Int. J. Numer. Methods Heat Fluid Flow
,
6
(
6
), pp.
85
97
.10.1108/09615539610131280
53.
Sphaier
,
L. A.
,
2012
, “
Integral Transform Solution for Heat Transfer in Parallel-Plates Micro-Channels: Combined Electroosmotic and Pressure Driven Flows With Isothermal Walls
,”
Int. Commun. Heat Mass Transfer
,
39
(
6
), pp.
769
775
.10.1016/j.icheatmasstransfer.2012.05.010
54.
Lee
,
P.-S.
,
Garimella
,
S. V.
, and
Liu
,
D.
,
2005
, “
Investigation of Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1688
1704
.10.1016/j.ijheatmasstransfer.2004.11.019
55.
Sphaier
,
L. A.
,
Braga
,
N. R.
, and
Chalhub
,
D.
,
2021
, “
Analytical Solutions for Extended Graetz Problem in Infinite Domains Via Integral Transforms
,”
Int. J. Therm. Sci.
,
170
, p.
107093
.10.1016/j.ijthermalsci.2021.107093
You do not currently have access to this content.