Abstract

Flow boiling heat transfer around the critical heat flux (CHF) condition at high reduced pressures of carbon dioxide in a 296-μm hydraulic diameter microchannel was experimentally studied. The CHF conditions for developing flow and fully developed flow were measured and compared to established correlations. The post-CHF heat transfer coefficient was obtained for l/d of 3.2, 7.4, and 11.6 for inlet Reynolds numbers, based on the homogeneous two-phase flow model, ranging from 6622 to 32,248. The critical heat flux conditions seemed to peak around a reduced pressure of about 0.5 and gradually decreased with reduced pressure. However, the typical rapid increase in the surface temperature following the CHF condition decreased with increasing pressure, and the post-CHF heat transfer coefficient was appreciably high (up to about 50 kW/m2K) at high reduced pressures. The enhancement in the heat transfer coefficient and CHF condition near the inlet were quantified. The experimental results were compared to established CHF correlations and heat transfer coefficient correlations with some limited success. Thus, the Katto CHF correlation (Katto and Ohno, 1984, “An Improved Version of the Generalized Correlation of Critical Heat Flux for the Forced Convective Boiling in Uniformly Heated Vertical Tubes,” Int. J. Heat Mass Transfer, 27(9), pp. 1641–1648) and the Bishop correlation (Bishop et al., 1964, “Forced-Convection Heat Transfer to Water at Near-Critical Temperatures and Supercritical Pressures,” Westinghouse Electric Corp, Atomic Power Division, Pittsburgh, PA.) for the post-CHF heat transfer coefficient were adjusted to better predict the experimental results. Additionally, an enhancement factor was derived to predict the increase in the heat transfer coefficient in the developing region.

References

1.
Bar-Cohen
,
A.
,
Asheghi
,
M.
,
Chainer
,
T. J.
,
Garimella
,
S. V.
,
Goodson
,
K.
,
Gorle
,
C.
,
Mandel
,
R.
,
Maurer
,
J. J.
,
Ohadi
,
M.
, and
Palko
,
J. W.
,
2021
, “
The ICECool Fundamentals Effort on Evaporative Cooling of Microelectronics
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
11
(
10
), pp.
1546
1564
.10.1109/TCPMT.2021.3111114
2.
Bogojevic
,
D.
,
Sefiane
,
K.
,
Duursma
,
G.
, and
Walton
,
A. J.
,
2013
, “
Bubble Dynamics and Flow Boiling Instabilities in Microchannels
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
663
675
.10.1016/j.ijheatmasstransfer.2012.11.038
3.
Kuo
,
C.-J.
, and
Peles
,
Y.
,
2009
, “
Pressure Effects on Flow Boiling Instabilities in Parallel Microchannels
,”
Int. J. Heat Mass Transfer
,
52
(
1–2
), pp.
271
280
.10.1016/j.ijheatmasstransfer.2008.06.015
4.
Kuo
,
C.-J.
, and
Peles
,
Y.
,
2008
, “
Flow Boiling Instabilities in Microchannels and Means for Mitigation by Reentrant Cavities
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
130
(
7
), p.
072402
.10.1115/1.2908431
5.
Liang
,
G.
, and
Mudawar
,
I.
,
2020
, “
Review of Channel Flow Boiling Enhancement by Surface Modification, and Instability Suppression Schemes
,”
Int. J. Heat Mass Transfer
,
146
, p.
118864
.10.1016/j.ijheatmasstransfer.2019.118864
6.
Mao
,
N.
,
Zhuang
,
J.
,
He
,
T.
, and
Song
,
M.
,
2021
, “
A Critical Review on Measures to Suppress Flow Boiling Instabilities in Microchannels
,”
Heat Mass Transfer
, pp.
889
910
.10.1007/s00231-020-03009-2
7.
Prajapati
,
Y. K.
, and
Bhandari
,
P.
,
2017
, “
Flow Boiling Instabilities in Microchannels and Their Promising Solutions–a Review
,”
Exp. Therm. Fluid Sci.
,
88
, pp.
576
593
.10.1016/j.expthermflusci.2017.07.014
8.
Parahovnik
,
A.
,
Asadzadeh
,
M.
,
Vasu
,
S. S.
, and
Peles
,
Y.
,
2020
, “
Subcooled Flow Boiling of Carbon Dioxide Near the Critical Point Inside a Microchannel
,”
Phys. Rev. Appl.
,
14
(
5
), p.
054050
.10.1103/PhysRevApplied.14.054050
9.
Parahovnik
,
A.
,
Manda
,
U.
, and
Peles
,
Y.
,
2022
, “
Heat Transfer Mode Shift to Adiabatic Thermalization in Near-Critical Carbon Dioxide With Flow Boiling in a Microchannel
,”
Int. J. Heat Mass Transfer
,
188
, p.
122629
.10.1016/j.ijheatmasstransfer.2022.122629
10.
Parahovnik
,
A.
,
Ahmed
,
P.
, and
Peles
,
Y.
,
2022
, “
Two-Phase Flow, Pressure Drop, and Joule-Thomson Effect in a Micro-Orifice With Trans Critical Carbon Dioxide Flow
,”
J. Supercrit. Fluids
,
188
, p.
105649
.10.1016/j.supflu.2022.105649
11.
Parahovnik
,
A.
, and
Peles
,
Y.
,
2021
, “
Bubble Dynamics in a Subcooled Flow Boiling of Near-Critical Carbon Dioxide
,”
Int. J. Heat Mass Transfer
,
183
(
Pt. C
), p.
122191
.10.1016/j.ijheatmasstransfer.2021.122191
12.
Parahovnik
,
A.
, and
Peles
,
Y.
,
2022
, “
High Pressure Saturated Flow Boiling of CO2 at the Micro Scale
,”
Int. J. Heat Mass Transfer
,
186
, p.
122449
.10.1016/j.ijheatmasstransfer.2021.122449
13.
Parahovnik
,
A.
, and
Peles
,
Y.
,
2019
, “
Supercritical CO2 as Cooling Fluid for High Power Devices
,”
IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)
, Tel-Aviv.
14.
Cheng
,
L.
,
Ribatski
,
G.
,
Wojtan
,
L.
, and
Thome
,
J. R.
,
2006
, “
New Flow Boiling Heat Transfer Model and Flow Pattern Map for Carbon Dioxide Evaporating Inside Horizontal Tubes
,”
Int. J. Heat Mass Transfer
,
49
(
21
), pp.
4082
4094
.10.1016/j.ijheatmasstransfer.2006.04.003
15.
Cheng
,
L.
,
Ribatski
,
G.
,
Moreno Quibén
,
J.
, and
Thome
,
J. R.
,
2008
, “
New Prediction Methods for CO2 Evaporation Inside Tubes: Part I – A Two-Phase Flow Pattern Map and a Flow Pattern Based Phenomenological Model for Two-Phase Flow Frictional Pressure Drops
,”
Int. J. Heat Mass Transfer
,
51
(
1
), pp.
111
124
.10.1016/j.ijheatmasstransfer.2007.04.002
16.
Cheng
,
L.
,
Ribatski
,
G.
, and
Thome
,
J. R.
,
2008
, “
New Prediction Methods for CO2 Evaporation Inside Tubes: Part II—An Updated General Flow Boiling Heat Transfer Model Based on Flow Patterns
,”
Int. J. Heat Mass Transfer
,
51
(
1
), pp.
125
135
.10.1016/j.ijheatmasstransfer.2007.04.001
17.
Marchetto
,
D. B.
,
Moreira
,
D. C.
,
Revellin
,
R.
, and
Ribatski
,
G.
,
2022
, “
A State-of-the-Art Review on Flow Boiling at High Reduced Pressures
,”
Int. J. Heat Mass Transfer
,
193
, p.
122951
.10.1016/j.ijheatmasstransfer.2022.122951
18.
Ducoulombier
,
M.
,
Colasson
,
S.
,
Bonjour
,
J.
, and
Haberschill
,
P.
,
2011
, “
Carbon Dioxide Flow Boiling in a Single Microchannel—Part I: Pressure Drops
,”
Exp. Therm. Fluid Sci.
,
35
(
4
), pp.
581
596
.10.1016/j.expthermflusci.2010.12.010
19.
Ducoulombier
,
M.
,
Colasson
,
S.
,
Bonjour
,
J.
, and
Haberschill
,
P.
,
2011
, “
Carbon Dioxide Flow Boiling in a Single Microchannel—Part II: Heat Transfer
,”
Exp. Therm. Fluid Sci.
,
35
(
4
), pp.
597
611
.10.1016/j.expthermflusci.2010.11.014
20.
Adeoye
,
S.
,
Parahovnik
,
A.
, and
Peles
,
Y.
,
2021
, “
A Micro Impinging Jet With Supercritical Carbon Dioxide
,”
Int. J. Heat Mass Transfer
,
170
, p.
121028
.10.1016/j.ijheatmasstransfer.2021.121028
21.
Adeoye
,
S.
,
Ahmed
,
P.
, and
Peles
,
Y.
,
2022
, “
Supercritical Carbon Dioxide in an Array of Micro Impinging Jets
,”
Int. J. Heat Mass Transfer
,
196
, p.
123215
.10.1016/j.ijheatmasstransfer.2022.123215
22.
Adeoye
,
S.
, and
Peles
,
Y.
,
2022
, “
Flow Boiling of Carbon Dioxide With a Micro Impinging Jet
,”
Int. J. Heat Mass Transfer
,
187
, p.
122495
.10.1016/j.ijheatmasstransfer.2021.122495
23.
Asadzadeh
,
M.
,
Parahovnik
,
A.
,
Adeoye
,
S.
, and
Peles
,
Y.
,
2019
, “
Investigation of Heat Transfer Characteristics of Supercritical Carbon Dioxide at Microchannels
,”
ASME Paper No. IMECE2019-10470
.10.1115/IMECE2019-10470
24.
Katto
,
Y.
, and
Ohno
,
H.
,
1984
, “
An Improved Version of the Generalized Correlation of Critical Heat Flux for the Forced Convective Boiling in Uniformly Heated Vertical Tubes
,”
Int. J. Heat Mass Transfer
,
27
(
9
), pp.
1641
1648
.10.1016/0017-9310(84)90276-X
25.
Bishop
,
A. A.
,
Sandberg
,
R. O.
, and
Tong
,
L. S.
,
1964
, “
Forced-Convection Heat Transfer to Water at Near-Critical Temperatures and Supercritical Pressures
,”
Westinghouse Electric Corp
,
Atomic Power Division
,
Pittsburgh, PA
.
26.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
27.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
1996
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
28.
Benesty
,
J.
,
Chen
,
J.
,
Huang
,
Y.
, and
Cohen
,
I.
,
2009
, “
Pearson Correlation Coefficient
,”
Noise Reduction in Speech Processing, Springer Topics in Signal Processing
, Vol.
2
,
Springer
,
Berlin
, pp.
1
4
.10.1007/978-3-642-00296-0_5
29.
Lemmon
,
E. W.
, Bell, I. H.,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2018
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0
,”
National Institute of Standards and Technology
, Standard Reference Data Program,
Gaithersburg, MD
.
30.
Katto
,
Y.
,
1978
, “
A Generalized Correlation of Critical Heat Flux for the Forced Convection Boiling in Vertical Uniformly Heated Round Tubes
,”
Int. J. Heat Mass Transfer
,
21
(
12
), pp.
1527
1542
.10.1016/0017-9310(78)90009-1
31.
Kutateladze
,
S. S.
,
1948
, “
On the Transition to Film Boiling Under Natural Convection
,”
Kotloturbostroenie
,
3
, pp.
10
12
.https://cir.nii.ac.jp/crid/1573950400119220352
32.
Zuber
,
N.
,
1959
, “
Hydrodynamic Aspects of Boiling Heat Transfer
,” Doctoral Dissertation of University of California,
Research Laboratory, Los Angeles and Ramo-Wooldridge Corporation, University of California
,
Los Angeles, CA
.
33.
Zuber
,
N.
,
1958
, “
On the Stability of Boiling Heat Transfer
,”
Trans. ASME
,
80
(
3
), pp.
711
714
.
34.
Collier
,
J. G.
, and
Thome
,
J. R.
,
1994
,
Convective Boiling and Condensation
,
Oxford University Press
,
Oxford
.
35.
Song
,
M.
,
Liu
,
X.
, and
Cheng
,
X.
,
2022
, “
A New Correlation for Post-Dryout Heat Transfer in Upward Vertical Flow
,”
Nucl. Eng. Des.
,
392
, p.
111747
.10.1016/j.nucengdes.2022.111747
36.
Chen
,
J. C.
,
Ozkaynak
,
F. T.
, and
Sundaram
,
R. K.
,
1979
, “
Vapor Heat Transfer in Post-CHF Region Including the Effect of Thermodynamic Non-Equilibrium
,”
Nucl. Eng. Des.
,
51
(
2
), pp.
143
155
.10.1016/0029-5493(79)90086-4
37.
Span
,
R.
, and
Wagner
,
W.
,
1996
, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region From the Triple-Point Temperature to 1100 K at Pressures Up to 800 MPa
,”
J. Phys. Chem. Ref. Data
,
25
(
6
), pp.
1509
1596
.10.1063/1.555991
38.
Miropolskiy
,
Z. L.
,
1963
, “
Heat Transfer in Film Boiling of a Steam-Water Mixture in Steam-Generator Tubes
,”
Teplonergetika
,
10
, pp.
49
52
.https://cir.nii.ac.jp/crid/1571980074368094848
39.
Groeneveld
,
D. C.
,
1975
, “
Post-Dryout Heat Transfer: Physical Mechanisms and a Survey of Prediction Methods
,”
Nucl. Eng. Des.
,
32
(
3
), pp.
283
294
.10.1016/0029-5493(75)90099-0
40.
Quinn
,
E. P.
,
1967
, “
Forced-Flow Heat Transfer to High-Pressure Water Beyond Critical Heat Flux
,”
ASME
,
New York
.
You do not currently have access to this content.