Abstract

This paper studies the groundwater model of the influence of physical parameters, including input frequency of the electromagnetic, and input concentration of contaminants in groundwater, on the velocity pattern, temperature distribution, and concentration distribution of convective heat transfer in saturated porous media as soil. The mathematical models have solved seven equations in this simulation study, i.e., Maxwell's equation, heat transfer in fluid and solid phases, momentum, and concentration equations. The effect of frequencies and input concentrations of contaminants on the convective heat transfer and concentration distribution in porous media as soil under an electromagnetic wave is investigated. The results indicate that the electromagnetic wave frequency of 2.45 GHz has the most influence on the temperature distribution, velocity patterns, and concentration distribution of the fluid within the porous media as soil during saturated flow in groundwater. The inlet fluid concentration of the contaminant at 30 mol/dm3 has the most impact on the temperature distribution between the implementation of an electromagnetic wave of 2.45 GHz. So, this numerical model provides simple decision data based on comparing the maximum contaminant concentrations of porous media as soil samples with surface soil screening levels such as petroleum engineering and agricultural engineering. This result can be used by the engineer as a guide to determine whether further investigation is needed.

References

1.
Chatterjee
,
S.
,
Basak
,
T.
, and
Das
,
S. K.
,
2007
, “
Microwave Driven Convection in a Rotating Cylindrical Cavity: A Numerical Study
,”
J. Food Eng.
,
79
(
4
), pp.
1269
1279
.10.1016/j.jfoodeng.2006.04.039
2.
Khanafer
,
K.
, and
Vafai
,
K.
,
2002
, “
Double-Diffusive Mixed Convection in a Lid-Driven Enclosure Filled With a Fluid-Saturated Porous Medium
,”
Numer. Heat Transfer, Part A
,
42
(
5
), pp.
465
486
.10.1080/10407780290059657
3.
Montienthong
,
P.
,
Rattanadecho
,
P.
, and
Klinbun
,
W.
,
2017
, “
Effect of Electromagnetic Field on Distribution of Temperature, Velocity and Concentration During Saturated Flow in Porous Media Based on Local Thermal Non-Equilibrium Models (Influent of Input Power and Input Velocity)
,”
Int. J. Heat Mass Transfer
,
106
, pp.
720
730
.10.1016/j.ijheatmasstransfer.2016.09.059
4.
Ayuttaya
,
S. N.
,
Suwimon
,
C. C.
,
Rattanadecho
,
P.
, and
Kreewatcharin
,
T.
,
2012
, “
Effect of Ground Arrangements on Swirling Flow in a Rectangular Duct Subjected to Electrohydrodynamic Effects
,”
ASME J. Fluids Eng.
,
135
(
5
), p.
051211
.10.1115/1.4006699
5.
Pengpom
,
N.
,
Vongpradubchai
,
S.
, and
Rattanadecho
,
P.
,
2019
, “
Numerical Analysis of Pollutant Concentration Dispersion and Convective Flow in a Two-Dimensional Confluent River Model
,”
Math. Modell. Eng. Probl.
,
6
(
2
), pp.
271
279
.10.18280/mmep.060215
6.
Jena
,
S. K.
,
Mahapatra
,
S. K.
, and
Sarkar
,
A.
,
2013
, “
Double Diffusive Buoyancy Opposed Natural Convection in a Porous Cavity Having Partially Active Vertical Walls
,”
Int. J. Heat Mass Transfer
,
62
, pp.
805
817
.10.1016/j.ijheatmasstransfer.2013.02.027
7.
Trevisan
,
Osvair
, and
Adrian
Bejan
. “
Mass and Heat Transfer by High Rayleigh Number Convection in a Porous Medium Heated From belowTransfert de Masse Par Convection Thermique a Grand Nombre de Rayleigh Dans un Milieu Poreux Chauffe Par le basStofftransport Durch Natürliche Konvektion Bei Hohe
,”
Int. J. Heat Mass Transfer
30
(
11
), pp.
2341
2356
.10.1016/0017-9310(87)90226-2
8.
Prasad
,
V.
, and
Tuntomo
,
A.
,
1987
, “
Inertia Effects on Natural Convection in a Vertical Porous Cavity
,”
Numer. Heat Transfer
,
11
(
3
), pp.
295
320
.10.1080/10407788708913556
9.
Rattanadecho
,
P.
,
Aokiand
,
K.
, and
Akahori
,
M.
, October
2002
, “
Experimental Validation of a Combined Electromagnetic and Thermal Model for a Microwave Heating of Multi-Layered Materials Using a Rectangular Wave Guide
,”
ASME J. Heat Transfer-Trans. ASME
,
124
(
5
), pp.
992
996
.10.1115/1.1495521
10.
Ratanadecho
,
P.
,
Aoki
,
K.
, and
Akahori
,
M.
, Feb
2002
, “
Influence of Irradiation Time, Particle Sizes, and Initial Moisture Content During Microwave Drying of Multi-Layered Capillary Porous Materials
,”
ASME J. Heat Transfer-Trans. ASME
,
124
(
1
), pp.
151
161
.10.1115/1.1423951
11.
Yousefi
,
Tara
,
S.A.
Mousavi
,
M.Z.
Saghir
, and
B.
Farahbakhsh
. “
An Investigation on the Microwave Heating of Flowing Water: A Numerical Study
,”
Int. J. Therm. Sci.
71
: pp.
118
127
.10.1016/j.ijthermalsci.2013.04.006
12.
Serttikul
,
C.
,
Datta
,
A. K.
, and
Rattanadecho
,
P.
,
2019
, “
Effect of Layer Arrangement on 2-D Numerical Analysis of Freezing Process in Double Layer Porous Packed Bed
,”
Int. J. Heat Technol.
,
37
(
1
), pp.
273
284
.10.18280/ijht.370133
13.
Wessapan
,
T.
, and
Rattanadecho
,
P.
,
2014
, “
Influence of Ambient Temperature on Heat Transfer in the Human Eye During Exposure to Electromagnetic Fields at 900 MHz
,”
Int. J. Heat Mass Transfer
,
70
, pp.
378
388
.10.1016/j.ijheatmasstransfer.2013.11.009
14.
Klinbun
,
W.
,
Rattanadecho
,
P.
, and
Pakdee
,
W.
,
2011
, “
Microwave Heating of Saturated Packed Bed Using a Rectangular Waveguide (TE10 Mode): Influence of Particle Size, Sample Dimension, Frequency, and Placement Inside the Guide
,”
Int. J. Heat Mass Transfer
,
54
(
9–10
), pp.
1763
1774
.10.1016/j.ijheatmasstransfer.2011.01.015
15.
Wessapan
,
T.
, and
Rattanadecho
,
P.
,
2016
, “
Flow and Heat Transfer in Biological Tissue Due to Electromagnetic Near-Field Exposure Effects
,”
Int. J. Heat Mass Transfer
,
97
, pp.
174
184
.10.1016/j.ijheatmasstransfer.2016.02.021
16.
Ayuttaya
,
S. N.
,
Suwimon
,
C. C.
, and
Rattanadecho
,
P.
,
2013
, “
Numerical Analysis of Electric Force Influence on Heat Transfer in a Channel Flow (Theory Based on Saturated Porous Medium Approach)
,”
Int. J. Heat Mass Transfer
,
64
, pp.
361
374
.10.1016/j.ijheatmasstransfer.2013.04.010
17.
Makul
,
N.
,
Rattanadecho
,
P.
, and
Agrawal
,
D. K.
,
2014
, “
Applications of Microwave Energy in Cement and Concrete – A Review
,”
Renewable Sustainable Energy Rev.
,
37
, pp.
715
733
.10.1016/j.rser.2014.05.054
18.
Keangin
,
P.
,
Vafai
,
K.
, and
Rattanadecho
,
P.
,
2013
, “
Electromagnetic Field Effects on Biological Materials
,”
Int. J. Heat Mass Transfer
,
65
, pp.
389
399
.10.1016/j.ijheatmasstransfer.2013.06.039
19.
Belmiloudi
,
A.
,
2010
, “
Parameter Identification Problems and Analysis of the Impact of Porous Media in Biofluid Heat Transfer in Biological Tissues During Thermal Therapy
,”
Nonlinear Anal.: Real World Appl.
,
11
(
3
), pp.
1345
1363
.10.1016/j.nonrwa.2009.02.025
20.
Afrin
,
N.
,
Zhang
,
Y.
, and
Chen
,
J. K.
,
2011
, “
Thermal Lagging in Living Biological Tissue Based on Nonequilibrium Heat Transfer Between Tissue, Arterial and Venous Bloods
,”
Int. J. Heat Mass Transfer
,
54
(
11–12
), pp.
2419
2426
.10.1016/j.ijheatmasstransfer.2011.02.020
21.
Klinbun
,
W.
,
Vafai
,
K.
, and
Rattanadecho
,
P.
,
2012
, “
Electromagnetic Field Effects on Transport Through Porous Media
,”
Int. J. Heat Mass Transfer
,
55
(
1–3
), pp.
325
335
.10.1016/j.ijheatmasstransfer.2011.09.022
22.
Wessapan
,
T.
, and
Rattanadecho
,
P.
,
2020
, “
Acoustic Streaming Effect on Flow and Heat Transfer in Porous Tissue During Exposure to Focused Ultrasound
,”
Case Stud. Therm. Eng.
,
21
, p.
100670
.10.1016/j.csite.2020.100670
23.
Amiri
,
A.
, and
Vafai
,
K.
,
1994
, “
Analysis of Dispersion Effects and Non-Thermal Equilibrium, Non-Darcian, Variable Porosity Incompressible Flow Through Porous Media
,”
Int. J. Heat Mass Transfer
,
37
(
6
), pp.
939
954
.10.1016/0017-9310(94)90219-4
24.
Montienthong
,
P.
, and
Rattanadecho
,
P.
,
2019
, “
Focused Ultrasound Ablation for the Treatment of Patients With Localized Deformed Breast Cancer: Computer Simulation
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
10
), p.
101101
.10.1115/1.4044393
25.
Mahmoudi
,
Y.
, and
Maerefat
,
M.
,
2011
, “
Analytical Investigation of Heat Transfer Enhancement in a Channel Partially Filled With a Porous Material Under Local Thermal Non-Equilibrium Condition
,”
Int. J. Therm. Sci.
,
50
(
12
), pp.
2386
2401
.10.1016/j.ijthermalsci.2011.07.008
26.
Khalid
,
A.
,
Khan
,
I.
,
Khan
,
A.
,
Shafie
,
S.
, and
Tlili
,
I.
,
2018
, “
Case Study of MHD Blood Flow in a Porous Medium With CNTS and Thermal Analysis
,”
Case Stud. Therm. Eng.
,
12
, pp.
374
380
.10.1016/j.csite.2018.04.004
27.
Preechaphonkul
,
W.
, and
Rattanadecho
,
P.
,
2021
, “
The Comparative of the Performance for Predicted Thermal Models During Microwave Ablation Process Using a Slot Antenna
,”
Case Stud. Therm. Eng.
,
25
, p.
100908
.10.1016/j.csite.2021.100908
28.
Sorokin
,
K. E.
, and
Perepechko
,
Y. V.
,
2021
, “
Thermal Convection of Fluid-Saturated Granular Medium in Acoustic Field
,”
Int. J. Numer. Methods Fluids
,
93
(
2
), pp.
339
355
.10.1002/fld.4885
29.
Rattanadecho
,
P.
,
Makul
,
N.
,
Pichaicherd
,
A.
,
Chanamai
,
P.
, and
Rungroungdouyboon
,
B.
,
2016
, “
A Novel Rapid Microwave-Thermal Process for Accelerated Curing of Concrete: Prototype Design, Optimal Process and Experimental Investigations
,”
Constr. Build. Mater.
,
123
(
1
), pp.
768
784
.10.1016/j.conbuildmat.2016.07.084
30.
Elmaboud
,
Y.
,
Abdelsalam
,
S. I.
,
Mekheimer
,
K.
, and
Vafai
,
K.
,
2019
, “
Electromagnetic Flow for Two-Layer Immiscible Fluids
,”
Eng. Sci. Technol. Int. J.
,
22
(
1
), pp.
237
248
.10.1016/j.jestch.2018.07.018
31.
Wang
,
S.
,
Vafai
,
K.
, and
Mukhopadhyay
,
S.
,
2014
, “
Two-Phase CO2 Migration in Tilted Aquifers in the Presence of Groundwater Flow
,”
Int. J. Heat Mass Transfer
,
77
, pp.
717
729
.10.1016/j.ijheatmasstransfer.2014.06.019
32.
Shafahi
,
M.
, and
Vafai
,
K.
,
2011
, “
Interfacial Interactions of Biomaterials in Water Decontamination Applications
,”
J. Mater. Sci.
,
46
(
19
), pp.
6277
6284
.10.1007/s10853-011-5417-8
33.
Mur
,
G.
,
1981
, “
Absorbing Boundary Conditions for the Finite Difference Approximation of the Time-Domain Electromagnetic-Field Equations
,”
IEEE Trans. Electromagn. Compat.
,
EMC-23
(
4
), pp.
377
382
.10.1109/TEMC.1981.303970
34.
Rattanadecho
,
P.
, and
Klinbun
,
W.
,
2012
, “
Numerical Analysis of Natural Convection in Porous Media Subjected to Electromagnetic Energy Using Local Thermal Nonequilibrium (LTNE) Models
,”
Drying Technol. Int. J.
,
30
(
16
), pp.
1896
1905
.10.1080/07373937.2012.718304
You do not currently have access to this content.