Abstract

This study provides a comprehensive analysis of the thermal behavior of tubular solar receivers used for direct steam generation, focusing on the effects of different wall thicknesses and longitudinal rectangular fins on the internal surface. The study evaluated six tubes, including two tubes with distinct wall thicknesses (5 mm and 3 mm) without fins and four tubes with fins but varying configurations. These tubes represent external tubular receivers used in solar central tower plants and operate at 4.5 MPa with a nonuniform solar flux averaging 0.8 MW/m2. Adding longitudinal fins to the tubes significantly reduced the maximum temperature on the irradiated surface and improved heat transfer to the fluid. The study concluded that the 45F5 receiver, which has three fins on the internal section, outperforms the other receivers, presenting a higher vapor generation. Furthermore, the 45F5 geometry enhances heat transfer, allowing the lowest maximum Biot number. These results are crucial for designing tubular solar receivers with direct steam generation systems and improving their efficiency in generating energy from renewable sources.

References

1.
Praveen
,
R. P.
,
Baseer
,
M. A.
,
Awan
,
A. B.
, and
Zubair
,
M.
,
2018
, “
Performance Analysis and Optimization of a Parabolic Trough Solar Power Plant in the Middle East Region
,”
Energies
,
11
(
4
), p.
741
.10.3390/en11040741
2.
Saghafifar
,
M.
,
Mohammadi
,
K.
, and
Powell
,
K.
,
2020
, “
Design and Analysis of a Dual-Receiver Direct Steam Generator Solar Power Tower Plant With a Flexible Heliostat Field
,”
Sustain. Energy Technol. Assess.
,
39
, p.
100698
.10.1016/j.seta.2020.100698
3.
Prieto
,
C.
,
Rodríguez
,
A.
,
Patiño
,
D.
, and
Cabeza
,
L. F.
,
2018
, “
Thermal Energy Storage Evaluation in Direct Steam Generation Solar Plants
,”
Sol. Energy
,
159
, pp.
501
509
.10.1016/j.solener.2017.11.006
4.
Ho
,
C. K.
, and
Iverson
,
B. D.
,
2014
, “
Review of High-Temperature Central Receiver Designs for Concentrating Solar Power
,”
Renew. Sustain. Energy Rev.
,
29
, pp.
835
846
.10.1016/j.rser.2013.08.099
5.
Montoya
,
A.
,
Rodríguez-Sánchez
,
M. R.
,
López-Puente
,
J.
, and
Santana
,
D.
,
2018
, “
Numerical Model of Solar External Receiver Tubes: Influence of Mechanical Boundary Conditions and Temperature Variation in Thermoelastic Stresses
,”
Sol. Energy
,
174
, pp.
912
922
.10.1016/j.solener.2018.09.068
6.
Wan
,
Z.
,
Fang
,
J.
,
Tu
,
N.
,
Wei
,
J.
, and
Qaisrani
,
M. A.
,
2018
, “
Numerical Study on Thermal Stress and Cold Startup Induced Thermal Fatigue of a Water/Steam Cavity Receiver in Concentrated Solar Power (CSP) Plants
,”
Sol. Energy
,
170
, pp.
430
441
.10.1016/j.solener.2018.05.087
7.
Peng
,
H.
,
Li
,
M.
, and
Liang
,
X.
,
2020
, “
Thermal-Hydraulic and Thermodynamic Performance of Parabolic Trough Solar Receiver Partially Filled With Gradient Metal Foam
,”
Energy
,
211
, p.
119046
.10.1016/j.energy.2020.119046
8.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Tsimpoukis
,
D.
,
2018
, “
Enhancing the Performance of Parabolic Trough Collectors Using Nanofluids and Turbulators
,”
Renew. Sustain. Energy Rev.
,
91
, pp.
358
375
.10.1016/j.rser.2018.03.091
9.
He
,
Y.-L.
,
Wang
,
K.
,
Qiu
,
Y.
,
Du
,
B.-C.
,
Liang
,
Q.
, and
Du
,
S.
,
2019
, “
Review of the Solar Flux Distribution in Concentrated Solar Power: Non-Uniform Features, Challenges, and Solutions
,”
Appl. Therm. Eng.
,
149
, pp.
448
474
.10.1016/j.applthermaleng.2018.12.006
10.
Rojas
,
M. E.
, and
de Andrés
,
M. C.
,
2006
, “
Theoretical and Experimental Study of Two-Phase Flow in Micro-Channels Grooved Into Horizontal Pipes
,”
Int. J. Multiphase Flow
,
32
(
4
), pp.
517
526
.10.1016/j.ijmultiphaseflow.2006.01.006
11.
Rojas
,
M. E.
,
de Andrés
,
M. C.
, and
González
,
L.
,
2008
, “
Designing Capillary Systems to Enhance Heat Transfer in LS3 Parabolic Trough Collectors for Direct Steam Generation (DSG)
,”
Sol. Energy
,
82
(
1
), pp.
53
60
.10.1016/j.solener.2007.04.005
12.
Tien Dung
,
N. D.
,
Wang
,
K.-J.
,
Chuang
,
F.-S.
, and
Kung
,
K.-Y.
,
2015
, “
Optimizing the Design of Receiver in Parabolic Trough by Using Genetic Algorithm
,”
Eur. J. Mech., B Fluids
,
49
, pp.
146
152
.10.1016/j.euromechflu.2014.08.003
13.
Wang
,
P.
,
Liu
,
D. Y.
, and
Xu
,
C.
,
2013
, “
Numerical Study of Heat Transfer Enhancement in the Receiver Tube of Direct Steam Generation With Parabolic Trough by Inserting Metal Foams
,”
Appl. Energy
,
102
, pp.
449
460
.10.1016/j.apenergy.2012.07.026
14.
Zhang
,
L.
,
Yu
,
Z.
,
Fan
,
L.
,
Wang
,
W.
,
Chen
,
H.
,
Hu
,
Y.
,
Fan
,
J.
,
Ni
,
M.
, and
Cen
,
K.
,
2013
, “
An Experimental Investigation of the Heat Losses of a U-Type Solar Heat Pipe Receiver of a Parabolic Trough Collector-Based Natural Circulation Steam Generation System
,”
Renewable Energy
,
57
, pp.
262
268
.10.1016/j.renene.2013.01.029
15.
Xiao
,
X.
,
Zhang
,
P.
,
Shao
,
D. D.
, and
Li
,
M.
,
2014
, “
Experimental and Numerical Heat Transfer Analysis of a V-Cavity Absorber for Linear Parabolic Trough Solar Collector
,”
Energy Convers. Manag.
,
86
, pp.
49
59
.10.1016/j.enconman.2014.05.001
16.
Reddy
,
K. S.
,
Ravi Kumar
,
K.
, and
Ajay
,
C. S.
,
2015
, “
Experimental Investigation of Porous Disc Enhanced Receiver for Solar Parabolic Trough Collector
,”
Renewable Energy
,
77
, pp.
308
319
.10.1016/j.renene.2014.12.016
17.
Zheng
,
Z.
,
Xu
,
Y.
, and
He
,
Y.
,
2016
, “
Thermal Analysis of a Solar Parabolic Trough Receiver Tube With Porous Insert Optimized by Coupling Genetic Algorithm and CFD
,”
Sci. China Technol. Sci.
,
59
(
10
), pp.
1475
1485
.10.1007/s11431-016-0373-x
18.
Jaramillo
,
O. A.
,
Borunda
,
M.
,
Velazquez-Lucho
,
K. M.
, and
Robles
,
M.
,
2016
, “
Parabolic Trough Solar Collector for Low Enthalpy Processes: An Analysis of the Efficiency Enhancement by Using Twisted Tape Inserts
,”
Renewable Energy
,
93
, pp.
125
141
.10.1016/j.renene.2016.02.046
19.
Zhu
,
X. W.
,
Fu
,
Y. H.
, and
Zhao
,
J. Q.
,
2016
, “
A Novel Wavy-Tape Insert Configuration for Pipe Heat Transfer Augmentation
,”
Energy Convers. Manage.
,
127
, pp.
140
148
.10.1016/j.enconman.2016.09.006
20.
Bellos
,
E.
,
Tzivanidis
,
C.
,
Antonopoulos
,
K. A.
, and
Gkinis
,
G.
,
2016
, “
Thermal Enhancement of Solar Parabolic Trough Collectors by Using Nanofluids and Converging-Diverging Absorber Tube
,”
Renewable Energy
,
94
, pp.
213
222
.10.1016/j.renene.2016.03.062
21.
Maytorena
,
V. M.
, and
Hinojosa
,
J. F.
,
2019
, “
Effect of Non-Uniform Concentrated Solar Flux on Direct Steam Generation in Vertical Pipes of Solar Tower Receivers
,”
Sol. Energy
,
183
, pp.
665
676
.10.1016/j.solener.2019.03.047
22.
Qaisrani
,
M. A.
,
Wei
,
J.
,
Fang
,
J.
,
Jin
,
Y.
,
Wan
,
Z.
, and
Khalid
,
M.
,
2019
, “
Heat Losses and Thermal Stresses of an External Cylindrical Water/Steam Solar Tower Receiver
,”
Appl. Therm. Eng.
,
163
, p.
114241
.10.1016/j.applthermaleng.2019.114241
23.
Heyhat
,
M. M.
,
Valizade
,
M.
,
Abdolahzade
,
S.
, and
Maerefat
,
M.
,
2020
, “
Thermal Efficiency Enhancement of Direct Absorption Parabolic Trough Solar Collector (DAPTSC) by Using Nanofluid and Metal Foam
,”
Energy
,
192
, p.
116662
.10.1016/j.energy.2019.116662
24.
Kumar
,
B. N.
, and
Reddy
,
K. S.
,
2020
, “
Numerical Investigations on Metal Foam Inserted Solar Parabolic Trough DSG Absorber Tube for Mitigating Thermal Gradients and Enhancing Heat Transfer
,”
Appl. Therm. Eng.
,
178
, p.
115511
.10.1016/j.applthermaleng.2020.115511
25.
Maytorena
,
V. M.
,
Hinojosa
,
J. F.
,
Moreno
,
S.
, and
Navarro
,
J. M. A.
,
2021
, “
Analysis of the Direct Steam Generation, Thermal Stresses, and Deformations in a Tubular Receiver of a Solar Tower
,”
J. Renewable Sustain. Energy
,
13
(
5
), p.
53704
.10.1063/5.0066123
26.
Fang
,
J.
,
Zhang
,
C.
,
Tu
,
N.
,
Wei
,
J.
, and
Wan
,
Z.
,
2021
, “
Thermal Characteristics and Thermal Stress Analysis of a Superheated Water/Steam Solar Cavity Receiver Under Non-Uniform Concentrated Solar Irradiation
,”
Appl. Therm. Eng.
,
183
, p.
116234
.10.1016/j.applthermaleng.2020.116234
27.
Liu
,
Y.
,
Dong
,
Y.
,
Xie
,
L.
,
Zhang
,
C.
, and
Xu
,
C.
,
2022
, “
Heat Transfer Enhancement of Supercritical CO2 in Solar Tower Receiver by the Field Synergy Principle
,”
Appl. Therm. Eng.
,
212
, p.
118479
.10.1016/j.applthermaleng.2022.118479
28.
Ahmadi
,
R.
,
Ueno
,
T.
, and
Okawa
,
T.
,
2012
, “
Bubble Dynamics at Boiling Incipience in Subcooled Upward Flow Boiling
,”
Int. J. Heat Mass Transfer
,
55
(
1–3
), pp.
488
497
.10.1016/j.ijheatmasstransfer.2011.09.050
29.
Yang
,
B.
,
Shang
,
Z.
,
Ding
,
J.
,
Lopez
,
J.
,
Jarosinski
,
W.
,
Sun
,
T.
,
Richter
,
N.
, et al.,
2022
, “
Investigation of Strengthening Mechanisms in an Additively Manufactured Haynes 230 Alloy
,”
Acta Mater.
,
222
, p.
117404
.10.1016/j.actamat.2021.117404
30.
Epstein
,
M.
,
Liebermann
,
D.
,
Rosh
,
M.
, and
Shor
,
A. J.
,
1991
, “
Solar Testing of 2 MWth Water/Steam Receiver at the Weizmann Institute Solar Tower
,”
Sol. Energy Mater.
,
24
(
1–4
), pp.
265
278
.10.1016/0165-1633(91)90067-U
31.
Rodríguez-Sánchez
,
M. R.
,
Soria-Verdugo
,
A.
,
Almendros-Ibáñez
,
J. A.
,
Acosta-Iborra
,
A.
, and
Santana
,
D.
,
2014
, “
Thermal Design Guidelines of Solar Power Towers
,”
Appl. Therm. Eng.
,
63
(
1
), pp.
428
438
.10.1016/j.applthermaleng.2013.11.014
32.
Ishii
,
M.
, and
Zuber
,
N.
,
1979
, “
Drag Coefficient and Relative Velocity in Bubbly, Droplet or Particulate Flows
,”
AIChE J.
,
25
(
5
), pp.
843
855
.10.1002/aic.690250513
33.
Moraga
,
F. J.
,
Bonetto
,
F. J.
, and
Lahey
,
R. T.
,
1999
, “
Lateral Forces on Spheres in Turbulent Uniform Shear Flow
,”
Int. J. Multiphase Flow
,
25
(
6–7
), pp.
1321
1372
.10.1016/S0301-9322(99)00045-2
34.
Antal
,
S. P.
,
Lahey
,
R. T.
, and
Flaherty
,
J. E.
,
1991
, “
Analysis of Phase Distribution in Fully Developed Laminar Bubbly Two-Phase Flow
,”
Int. J. Multiphase Flow
,
17
(
5
), pp.
635
652
.10.1016/0301-9322(91)90029-3
35.
Lopez de Bertodano
,
M.
,
Lahey
,
R. T.
, and
Jones
,
O. C.
,
1994
, “
Turbulent Bubbly Two-Phase Flow Data in a Triangular Duct
,”
Nucl. Eng. Des.
,
146
(
1–3
), pp.
43
52
.10.1016/0029-5493(94)90319-0
36.
Kurul
,
N.
, and
Podowski
,
M. Z.
,
1991
, “
On the Modeling of Multidimensional Effects in Boiling Channels
,”
Proceedings of the 27th National Heat Transfer Conference
,
Minneapolis, MN
, pp.
301
314
.
37.
Maytorena
,
V. M.
, and
Hinojosa
,
J. F.
,
2019
, “
Three-Dimensional Numerical Study of Direct Steam Generation in Vertical Tubes Receiving Concentrated Solar Radiation
,”
Int. J. Heat Mass Transfer
,
137
, pp.
413
433
.10.1016/j.ijheatmasstransfer.2019.03.101
38.
Maytorena
,
V. M.
, and
Hinojosa
,
J. F.
,
2018
, “
Computational Modeling of Direct Steam Generation in Pipes Receiving Concentrated Solar Radiation
,”
Ing. Mecánica Tecnol. Y Desarro.
,
6
(
3
), pp.
107
121
.http://revistasomim.net/index.php/IMTyD/article/view/144
39.
Bartolomei
,
G. G.
, and
Chanturiya
,
V. M.
,
1967
, “
Experimental Study of True Void Fraction When Boiling Subcooled Water in Vertical Tubes
,”
Therm. Eng.
,
14
(
2
), pp.
123
128
.https://scholar.google.com/scholar_lookup?title=Experimental%20study%20of%20true%20void%20fraction%20when%20boiling%20subcooled%20water%20in%20vertical%20tubes&publication_year=1967&author=G.G.%20Bartolomei&author=V.M.%20Chanturiya
40.
Gu
,
J.
,
Wang
,
Q.
,
Wu
,
Y.
,
Lyu
,
J.
,
Li
,
S.
, and
Yao
,
W.
,
2017
, “
Modeling of Subcooled Boiling by Extending the RPI Wall Boiling Model to Ultra-High Pressure Conditions
,”
Appl. Therm. Eng.
,
124
, pp.
571
584
.10.1016/j.applthermaleng.2017.06.017
41.
Nemitallah
,
M. A.
,
Habib
,
M. A.
,
Ben Mansour
,
R.
, and
El Nakla
,
M.
,
2015
, “
Numerical Predictions of Flow Boiling Characteristics: Current Status, Model Setup and CFD Modeling for Different Non-Uniform Heating Profiles
,”
Appl. Therm. Eng.
,
75
, pp.
451
460
.10.1016/j.applthermaleng.2014.09.036
42.
Mali
,
C. R.
,
Vinod
,
V.
, and
Patwardhan
,
A. W.
,
2017
, “
Comparison of Phase Interaction Models for High Pressure Subcooled Boiling Flow in Long Vertical Tubes
,”
Nucl. Eng. Des.
,
324
, pp.
337
359
.10.1016/j.nucengdes.2017.09.010
43.
Zhang
,
X.
,
Zhang
,
R.
,
Lv
,
X.
, and
Cong
,
T.
,
2018
, “
Investigation on the Subcooled Boiling in Vertical Pipe With Uncertainties From Boundary Conditions by Using FLUENT
,”
Front. Energy Res.
,
6
, p.
23
.10.3389/fenrg.2018.00023
44.
Hewitt
,
G. F.
, and
Robertson
,
D. N.
,
1969
, “
Studies of Two-Phase Flow Patterns by Simultaneous X-Ray and Flash Photography
,” Report No. AERE-M2159, UKAEA, Harwell.
45.
Wang
,
Y.
,
Fu
,
H.
,
Yang
,
L.
,
Wang
,
S.
,
Liang
,
H.
, and
Ling
,
K.
,
2019
, “
Study the Boundary of Two-Phase Flow Regime From Bubble to Slug Flow
,”
ASTFE Digital Library, 4th Thermal and Fluids Engineering Conference
, Las Vegas, NV, Apr. 14–17, pp.
965
980
.
46.
Peng
,
K.
,
Qin
,
F. G. F.
,
Jiang
,
R.
, and
Kang
,
S.
,
2020
, “
Effect of Tube Size on the Thermal Stress in Concentrating Solar Receiver Tubes
,”
ASME J. Sol. Energy Eng.
,
142
(
5
), p.
051008
.10.1115/1.4046466
47.
Shatnawi
,
H.
,
Lim
,
C. W.
,
Ismail
,
F. B.
, and
Aldossary
,
A.
,
2021
, “
An Optimisation Study of a Solar Tower Receiver: The Influence of Geometry and Material, Heat Flux, and Heat Transfer Fluid on Thermal and Mechanical Performance
,”
Heliyon
,
7
(
7
), p.
e07489
.10.1016/j.heliyon.2021.e07489
48.
Marugán-Cruz
,
C.
,
Flores
,
O.
,
Santana
,
D.
, and
García-Villalba
,
M.
,
2016
, “
Heat Transfer and Thermal Stresses in a Circular Tube With a Non-Uniform Heat Flux
,”
Int. J. Heat Mass Transfer
,
96
, pp.
256
266
.10.1016/j.ijheatmasstransfer.2016.01.035
You do not currently have access to this content.