Abstract

Operating fluids are always a significant factor for not achieving a good enough performance of heat transfer equipment and also for growing the energy costs. To resolve this issue, nanofluids are considered a potential choice for conventional heat transfer fluids due to their efficiency for the improvement of overall thermal performance. The aim of this research is to propose a physics-guided machine learning approach by incorporating physics-based relations at the initial stage and into traditional loss functions for predicting the thermal conductivity of water-based nanofluids using a wide range of both experimental and simulated data of nanoparticles Al2O3, CuO, and TiO2. Further, smart connectionist methods, viz., ridge regression, lasso regression, random forest, extreme gradient boosting (xgboost (XGB)), and black-box multilayer perceptron (MLP) are applied to compare the present physics-aware MLP model based on different statistical indicators. The accuracy analyses reveal that the use of physical views to monitor the learning of neural networks shows better results with mean absolute percentage error (MAPE) = 0.7075%, root-mean-squared error (RMSE) = 0.0042 W/mK, and R2 = 0.9525. The temperature and volume concentration variations are discussed graphically. Furthermore, the outcomes of applied algorithms confirm that the well-known theoretical and computer-aided models show substandard results than the proposed model.

References

1.
Wang
,
X.
,
Xu
,
X.
, and
Choi
,
S. U.
,
1999
, “
Thermal Conductivity of Nanoparticle-Fluid Mixture
,”
J. Thermophys. Heat Transfer
,
13
(
4
), pp.
474
480
.10.2514/2.6486
2.
Chandrasekar
,
M.
,
Suresh
,
S.
, and
Bose
,
A. C.
,
2010
, “
Experimental Investigations and Theoretical Determination of Thermal Conductivity and Viscosity of Al2O3/Water Nanofluid
,”
Exp. Therm. Fluid Sci.
,
34
(
2
), pp.
210
216
.10.1016/j.expthermflusci.2009.10.022
3.
Wang
,
X. Q.
, and
Mujumdar
,
A. S.
,
2007
, “
Heat Transfer Characteristics of Nanofluids: A Review
,”
Int. J. Therm. Sci.
,
46
(
1
), pp.
1
19
.10.1016/j.ijthermalsci.2006.06.010
4.
Yu
,
W.
,
France
,
M. D.
,
Choi
,
S. U.
, and
Routbort
,
J. L.
,
2007
, “Review and Assessment of Nanofluid Technology for Transportation and Other Applications,” Argonne National Laboratory (ANL), Argonne, IL, Report No. ANL/ESD/07-9.
5.
Sundar
,
L. S.
,
Singh
,
K. M.
, and
Sousa
,
A. C.
,
2013
, “
Thermal Conductivity of Ethylene Glycol and Water Mixture Based fe3o4 Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
49
, pp.
17
24
.10.1016/j.icheatmasstransfer.2013.08.026
6.
Putnam
,
S. A.
,
Cahill
,
D. G.
,
Braun
,
P. V.
,
Ge
,
Z.
, and
Shimmin
,
R. G.
,
2006
, “
Thermal Conductivity of Nanoparticle Suspensions
,”
J. Appl. Phys.
,
99
(
8
), p.
084308
.10.1063/1.2189933
7.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
,
2003
, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
,
125
(
4
), pp.
567
574
.10.1115/1.1571080
8.
Buschmann
,
M. H.
,
2012
, “
Thermal Conductivity and Heat Transfer of Ceramic Nanofluids
,”
Int. J. Therm. Sci.
,
62
, pp.
19
28
.10.1016/j.ijthermalsci.2011.09.019
9.
Akhgar
,
A.
,
Toghraie
,
D.
,
Sina
,
N.
, and
Afrand
,
M.
,
2019
, “
Developing Dissimilar Artificial Neural Networks (ANNs) to Prediction the Thermal Conductivity of MWCNT-TiO2/Water-Ethylene Glycol Hybrid Nanofluid
,”
Powder Technol.
,
355
, pp.
602
610
.10.1016/j.powtec.2019.07.086
10.
Kumar
,
D. D.
, and
Arasu
,
A. V.
,
2018
, “
A Comprehensive Review of Preparation, Characterization, Properties and Stability of Hybrid Nanofluids
,”
Renewable Sustainable Energy Rev.
,
81
, pp.
1669
1689
.10.1016/j.rser.2017.05.257
11.
Suresh
,
S.
,
Venkitaraj
,
K. P.
,
Selvakumar
,
P.
, and
Chandrasekar
,
M.
,
2012
, “
Effect of Al2O3–Cu/Water Hybrid Nanofluid in Heat Transfer
,”
Exp. Therm. Fluid Sci.
,
38
, pp.
54
60
.10.1016/j.expthermflusci.2011.11.007
12.
Chon
,
C. H.
,
Kihm
,
K. D.
,
Lee
,
S. P.
, and
Choi
,
S. U.
,
2005
, “
Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement
,”
Appl. Phys. Lett.
,
87
(
15
), p.
153107
.10.1063/1.2093936
13.
Esfe
,
M. H.
,
Afrand
,
M.
,
Yan
,
W. M.
,
Yarmand
,
H.
,
Toghraie
,
D.
, and
Dahari
,
M.
,
2016
, “
Effects of Temperature and Concentration on Rheological Behavior of MWCNTs/SiO2 (20–80)-SAE40 Hybrid Nano-Lubricant
,”
Int. Commun. Heat Mass Transfer
,
76
, pp.
133
138
.10.1016/j.icheatmasstransfer.2016.05.015
14.
Mintsa
,
H. A.
,
Roy
,
G.
,
Nguyen
,
C. T.
, and
Doucet
,
D.
,
2009
, “
New Temperature Dependent Thermal Conductivity Data for Water-Based Nanofluids
,”
Int. J. Therm. Sci.
,
48
(
2
), pp.
363
371
.10.1016/j.ijthermalsci.2008.03.009
15.
Vajjha
,
R. S.
, and
Das
,
D. K.
,
2009
, “
Experimental Determination of Thermal Conductivity of Three Nanofluids and Development of New Correlations
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
4675
4682
.10.1016/j.ijheatmasstransfer.2009.06.027
16.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
,
2008
, “
Investigations of Thermal Conductivity and Viscosity of Nanofluids
,”
Int. J. Therm. Sci.
,
47
(
5
), pp.
560
568
.10.1016/j.ijthermalsci.2007.05.004
17.
Malekan
,
M.
,
Khosravi
,
A.
,
Goshayeshi
,
H. R.
,
Assad
,
M. E. H.
, and
Garcia Pabon
,
J. J.
,
2019
, “
Thermal Resistance Modeling of Oscillating Heat Pipes for Nanofluids by Artificial Intelligence Approach
,”
ASME J. Heat Transfer
,
141
(
7
), p.
072402
.10.1115/1.4043569
18.
Ahmadi
,
M. H.
,
Nazari
,
M. A.
,
Ghasempour
,
R.
,
Madah
,
H.
,
Shafii
,
M. B.
, and
Ahmadi
,
M. A.
,
2018
, “
Thermal Conductivity Ratio Prediction of al2o3/Water Nanofluid by Applying Connectionist Methods
,”
Colloids Surf., A
,
541
, pp.
154
164
.10.1016/j.colsurfa.2018.01.030
19.
Hojjat
,
M.
,
Etemad
,
S. G.
,
Bagheri
,
R.
, and
Thibault
,
J.
,
2011
, “
Thermal Conductivity of Non-Newtonian Nanofluids: Experimental Data and Modeling Using Neural Network
,”
Int. J. Heat Mass Transfer
,
54
(
5–6
), pp.
1017
1023
.10.1016/j.ijheatmasstransfer.2010.11.039
20.
Ariana
,
M. A.
,
Vaferi
,
B.
, and
Karimi
,
G.
,
2015
, “
Prediction of Thermal Conductivity of Alumina Water-Based Nanofluids by Artificial Neural Networks
,”
Powder Technol.
,
278
, pp.
1
10
.10.1016/j.powtec.2015.03.005
21.
Esfe
,
M. H.
,
Yan
,
W. M.
,
Afrand
,
M.
,
Sarraf
,
M.
,
Toghraie
,
D.
, and
Dahari
,
M.
,
2016
, “
Estimation of Thermal Conductivity of al2o3/Water (40%)–Ethylene Glycol (60%) by Artificial Neural Network and Correlation Using Experimental Data
,”
Int. Commun. Heat Mass Transfer
,
74
, pp.
125
128
.10.1016/j.icheatmasstransfer.2016.02.002
22.
Esfe
,
M. H.
,
Rostamian
,
H.
,
Afrand
,
M.
,
Karimipour
,
A.
, and
Hassani
,
M.
,
2015
, “
Modeling and Estimation of Thermal Conductivity of MgO–Water/EG (60: 40) by Artificial Neural Network and Correlation
,”
Int. Commun. Heat Mass Transfer
,
68
, pp.
98
103
.10.1016/j.icheatmasstransfer.2015.08.015
23.
Rostami
,
S.
,
Toghraie
,
D.
,
Shabani
,
B.
,
Sina
,
N.
, and
Barnoon
,
P.
,
2021
, “
Measurement of the Thermal Conductivity of MWCNT-CuO/Water Hybrid Nanofluid Using Artificial Neural Networks (ANNs)
,”
J. Therm. Anal. Calorim.
,
143
(
2
), pp.
1097
1105
.10.1007/s10973-020-09458-5
24.
Ahmadi
,
M. H.
,
Baghban
,
A.
,
Sadeghzadeh
,
M.
,
Hadipoor
,
M.
, and
Ghazvini
,
M.
,
2020
, “
Evolving Connectionist Approaches to Compute Thermal Conductivity of TiO2/Water Nanofluid
,”
Phys. A.
,
540
, p.
122489
.10.1016/j.physa.2019.122489
25.
Bikmukhametov
,
T.
, and
Jäschke
,
J.
,
2020
, “
Combining Machine Learning and Process Engineering Physics Towards Enhanced Accuracy and Explainability of Data-Driven Models
,”
Comput. Chem. Eng.
,
138
, p.
106834
.10.1016/j.compchemeng.2020.106834
26.
Naceur
,
M. B.
,
Saouli
,
R.
,
Akil
,
M.
, and
Kachouri
,
R.
,
2018
, “
Fully Automatic Brain Tumor Segmentation Using End-to-End Incremental Deep Neural Networks in MRI Images
,”
Comput. Methods Programs Biomed.
,
166
, pp.
39
49
.10.1016/j.cmpb.2018.09.007
27.
Read
,
J. S.
,
Jia
,
X.
,
Willard
,
J.
,
Appling
,
A. P.
,
Zwart
,
J. A.
,
Oliver
,
S. K.
,
Karpatne
,
A.
,
Hansen
,
G. J. A.
,
Hanson
,
P. C.
,
Watkins
,
W.
,
Steinbach
,
M.
, and
Kumar
,
V.
,
2019
, “
Process-Guided Deep Learning Predictions of Lake Water Temperature
,”
Water Resour. Res.
,
55
(
11
), pp.
9173
9190
.10.1029/2019WR024922
28.
Changdar
,
S.
,
Bhaumik
,
B.
, and
De
,
S.
,
2021
, “
Physics-Based Smart Model for Prediction of Viscosity of Nanofluids Containing Nanoparticles Using Deep Learning
,”
J. Comput. Des. Eng.
,
8
(
2
), pp.
600
614
.
29.
Maxwell
,
J. C.
,
1873
,
A Treatise on Electricity and Magnetism
, Vol.
1
,
Clarendon Press
, Oxford, UK.
30.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
,
1962
, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
Ind. Eng. Chem. Fundam.
,
1
(
3
), pp.
187
191
.10.1021/i160003a005
31.
Koo
,
J.
, and
Kleinstreuer
,
C.
,
2004
, “
A New Thermal Conductivity Model for Nanofluids
,”
J. Nanopart. Res.
,
6
(
6
), pp.
577
588
.10.1007/s11051-004-3170-5
32.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer-Trans. ASME
, 128(3), pp.
240
250
.10.1115/1.2150834
33.
Corcione
,
M.
,
2011
, “
Empirical Correlating Equations for Predicting the Effective Thermal Conductivity and Dynamic Viscosity of Nanofluids
,”
Energy Convers. Manage.
,
52
(
1
), pp.
789
793
.10.1016/j.enconman.2010.06.072
34.
Li
,
C. H.
, and
Peterson
,
G. P.
,
2006
, “
Experimental Investigation of Temperature and Volume Fraction Variations on the Effective Thermal Conductivity of Nanoparticle Suspensions (Nanofluids)
,”
J. Appl. Phys.
,
99
(
8
), p.
084314
.10.1063/1.2191571
35.
Garoosi
,
F.
,
2020
, “
Presenting Two New Empirical Models for Calculating the Effective Dynamic Viscosity and Thermal Conductivity of Nanofluids
,”
Powder Technol.
,
366
, pp.
788
820
.10.1016/j.powtec.2020.03.032
36.
Dawahdeh
,
A.
,
Oh
,
J.
,
Zhai
,
T.
, and
Palazzolo
,
A.
,
2021
, “
Computational Fluid Dynamics–Machine Learning Prediction of Machinery Coupling Windage Heating and Power Loss
,”
ASME J. Heat Transfer
,
143
(
8
), p.
082201
.10.1115/1.4051351
37.
Panzone
,
L.
,
Ulph
,
A.
,
Areal
,
F.
, and
Grippo
,
V.
,
2021
, “
A Ridge Regression Approach to Estimate the Relationship Between Landfill Taxation and Waste Collection and Disposal in England
,”
Waste Manage.
,
129
, pp.
95
110
.10.1016/j.wasman.2021.04.054
38.
García-Nieto
,
P. J.
,
García-Gonzalo
,
E.
, and
Paredes-Sánchez
,
J. P.
,
2021
, “
Prediction of the Critical Temperature of a Superconductor by Using the Woa/Mars, Ridge, Lasso and Elastic-Net Machine Learning Techniques
,”
Neural Comput. Appl.
,
33
(
24
), pp.
17131
17145
.10.1007/s00521-021-06304-z
39.
Gholizadeh
,
M.
,
Jamei
,
M.
,
Ahmadianfar
,
I.
, and
Pourrajab
,
R.
,
2020
, “
Prediction of Nanofluids Viscosity Using Random Forest (RF) Approach
,”
Chemom. Intell. Lab. Syst.
,
201
, p.
104010
.10.1016/j.chemolab.2020.104010
40.
Gul
,
S.
, and
van Oort
,
E.
,
2020
, “
A Machine Learning Approach to Filtrate Loss Determination and Test Automation for Drilling and Completion Fluids
,”
J. Pet. Sci. Eng.
,
186
, p.
106727
.10.1016/j.petrol.2019.106727
41.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
,
Prettenhofer
,
P.
,
Weiss
,
R.
,
Dubourg
,
V.
,
Vanderplas
,
J.
,
Passos
,
A.
,
Cournapeau
,
D.
,
Brucher
,
M.
,
Perrot
,
M.
, and
Duchesnay
,
E.
,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn Res.
,
12
, pp.
2825
2830
.http://jmlr.org/papers/v12/pedregosa11a.html
42.
Karpatne
,
A.
,
Atluri
,
G.
,
Faghmous
,
J. H.
,
Steinbach
,
M.
,
Banerjee
,
A.
,
Ganguly
,
A.
,
Shekhar
,
S.
,
Samatova
,
N.
, and
Kumar
,
V.
,
2017
, “
Theory-Guided Data Science: A New Paradigm for Scientific Discovery From Data
,”
IEEE Trans. Knowl. Data Eng.
,
29
(
10
), pp.
2318
2331
.10.1109/TKDE.2017.2720168
43.
Daw
,
A.
,
Thomas
,
R. Q.
,
Carey
,
C. C.
,
Read
,
J. S.
,
Appling
,
A. P.
, and
Karpatne
,
A.
,
2020
, “
Physics-Guided Architecture (Pga) of Neural Networks for Quantifying Uncertainty in Lake Temperature Modeling
,”
Proceedings of the 2020 Siam International Conference on Data Mining (SIAM)
, SIAM, Cincinnati, OH, pp.
532
540
.
44.
Longo
,
G. A.
, and
Zilio
,
C.
,
2011
, “
Experimental Measurement of Thermophysical Properties of Oxide–Water Nano-Fluids Down to Ice-Point
,”
Exp. Therm. Fluid Sci.
,
35
(
7
), pp.
1313
1324
.10.1016/j.expthermflusci.2011.04.019
45.
Beck
,
M. P.
,
Yuan
,
Y.
,
Warrier
,
P.
, and
Teja
,
A. S.
,
2009
, “
The Effect of Particle Size on the Thermal Conductivity of Alumina Nanofluids
,”
J. Nanopart. Res.
,
11
(
5
), pp.
1129
1136
.10.1007/s11051-008-9500-2
46.
Yiamsawasd
,
T.
,
Dalkilic
,
A. S.
, and
Wongwises
,
S.
,
2012
, “
Measurement of the Thermal Conductivity of Titania and Alumina Nanofluids
,”
Thermochim. Acta
,
545
, pp.
48
56
.10.1016/j.tca.2012.06.026
47.
Teng
,
T. P.
,
Hung
,
Y. H.
,
Teng
,
T. C.
,
Mo
,
H. E.
, and
Hsu
,
H. G.
,
2010
, “
The Effect of Alumina/Water Nanofluid Particle Size on Thermal Conductivity
,”
Appl. Therm. Eng.
,
30
(
14–15
), pp.
2213
2218
.10.1016/j.applthermaleng.2010.05.036
48.
Senthilraja
,
S.
,
Vijayakumar
,
K.
, and
Gangadevi
,
R.
,
2015
, “
A Comparative Study on Thermal Conductivity of Al2O3/Water, Cuo/Water and Al2O3–CuO/Water Nanofluids
,”
Dig. J. Nanomater.Biostructures
,
10
(
4
), pp.
1449
1458
.https://chalcogen.ro/1449_Senthilraja.pdf
49.
Zhang
,
X.
,
Gu
,
H.
, and
Fujii
,
M.
,
2006
, “
Experimental Study on the Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids
,”
Int. J. Thermophys.
,
27
(
2
), pp.
569
580
.10.1007/s10765-006-0054-1
50.
Godson
,
L.
,
Raja
,
B.
,
Lal
,
D. M.
, and
Wongwises
,
S.
,
2010
, “
Experimental Investigation on the Thermal Conductivity and Viscosity of Silver-Deionized Water Nanofluid
,”
Exp. Heat Transfer.
,
23
(
4
), pp.
317
332
.10.1080/08916150903564796
51.
Tavman
,
I.
,
Turgut
,
A.
,
Chirtoc
,
M.
,
Hadjov
,
K.
,
Fudym
,
O.
, and
Tavman
,
S.
,
2010
, “
Experimental Study on Thermal Conductivity and Viscosity of Water-Based Nanofluids
,”
Heat Transf. Res.
,
41
(
3
), pp.
339
351
.
52.
Zhang
,
X.
,
Gu
,
H.
, and
Fujii
,
M.
,
2007
, “
Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids Containing Spherical and Cylindrical Nanoparticles
,”
Exp. Therm. Fluid Sci.
,
31
(
6
), pp.
593
599
.10.1016/j.expthermflusci.2006.06.009
53.
Eastman
,
J. A.
,
1999
, “Novel Thermal Properties of Nanostructured Materials,”
Argonne National Laboratory
,
Argonne, IL
, Report No. ANL/MSD/CP-96711.
54.
Ramires
,
M. L.
,
Nieto de Castro
,
C. A.
,
Nagasaka
,
Y.
,
Nagashima
,
A.
,
Assael
,
M. J.
, and
Wakeham
,
W. A.
,
1995
, “
Standard Reference Data for the Thermal Conductivity of Water
,”
J. Phys. Chem. Ref. Data
,
24
(
3
), pp.
1377
1381
.10.1063/1.555963
You do not currently have access to this content.