Abstract

To explore the effect of microstructured porous surface on enhancing the heat transfer of flow boiling in a microchannel, the microporous copper surface was fabricated with microscale pores in ranges of 1–5 μm, which presented super-hydrophobicity. Subcooled flow boiling experiments were carried out to study the hydraulic and thermal transport performance in a single narrow rectangular microchannel. High-speed flow visualizations were conducted coupled with instrumental measurements to illustrate the effects of heat flux and mass flux on heat transfer performance and flow patterns for originally hydrophilic bare copper surface and superhydrophobic microporous structured surface. The onset of boiling (ONB) characteristics of both test surfaces was compared with predictive correlations with a good agreement and verified by the captured flow pattern images. Benefit from the superhydrophobic wettability provided by its microscale porous structures and a large number of potential nucleation sites, the required wall superheats, and imposed heat fluxes of onset of boiling both decreased for the modified surface. The flow patterns on the two surfaces varied, which resulted in the different trends of heat transfer coefficient (HTC) with mass fluxes and heat fluxes. Because of the strengthened bubble departure process, the enhancement of the porous surface compared to the original bare surface gradually increased with mass fluxes. The average two-phase heat transfer coefficients of the superhydrophobic porous copper surface were enhanced for up to 74.84%, due to the earlier onset of boiling, higher frequency of bubble nucleation, and strengthened boiling intensity.

References

1.
Szczukiewicz
,
S.
,
Magnini
,
M.
, and
Thome
,
J. R.
,
2014
, “
Proposed Models, Ongoing Experiments, and Latest Numerical Simulations of Microchannel Two-Phase Flow Boiling
,”
Int. J. Multiphase Flow
,
59
, pp.
84
101
.10.1016/j.ijmultiphaseflow.2013.10.014
2.
Cheng
,
L.
, and
Xia
,
G.
,
2017
, “
Fundamental Issues, Mechanisms and Models of Flow Boiling Heat Transfer in Microscale Channels
,”
Int. J. Heat Mass Transfer
,
108
, pp.
97
127
.10.1016/j.ijheatmasstransfer.2016.12.003
3.
Prajapati
,
Y. K.
, and
Bhandari
,
P.
,
2017
, “
Flow Boiling Instabilities in Microchannels and Their Promising Solutions – A Review
,”
Exp. Therm. Fluid Sci.
,
88
, pp.
576
593
.10.1016/j.expthermflusci.2017.07.014
4.
Asadi
,
M.
,
Xie
,
G.
, and
Sunden
,
B.
,
2014
, “
A Review of Heat Transfer and Pressure Drop Characteristics of Single and Two-Phase Microchannels
,”
Int. J. Heat Mass Transfer
,
79
, pp.
34
53
.10.1016/j.ijheatmasstransfer.2014.07.090
5.
Kharangate
,
C. R.
, and
Mudawar
,
I.
,
2017
, “
Review of Computational Studies on Boiling and Condensation
,”
Int. J. Heat Mass Transfer
,
108
, pp.
1164
1196
.10.1016/j.ijheatmasstransfer.2016.12.065
6.
Harirchian
,
T.
, and
Garimella
,
S. V.
,
2009
, “
Effects of Channel Dimension, Heat Flux, and Mass Flux on Flow Boiling Regimes in Microchannels
,”
Int. J. Multiphase Flow
,
35
(
4
), pp.
349
362
.10.1016/j.ijmultiphaseflow.2009.01.003
7.
Costa-Patry
,
E.
,
Olivier
,
J.
,
Michel
,
B.
, and
Thome
,
J. R.
,
2011
, “
Two-Phase Flow of Refrigerants in 85 μm-Wide Multi-Microchannels: Part II—Heat Transfer With 35 Local Heaters
,”
Int. J. Heat Fluid Flow
,
32
(
2
), pp.
464
476
.10.1016/j.ijheatfluidflow.2011.01.006
8.
Soupremanien
,
U.
,
Person
,
S. L.
,
Favre-Marinet
,
M.
, and
Bultel
,
Y.
,
2011
, “
Influence of the Aspect Ratio on Boiling Flows in Rectangular Mini-Channels
,”
Exp. Therm. Fluid Sci.
,
35
(
5
), pp.
797
809
.10.1016/j.expthermflusci.2010.06.014
9.
Gao
,
L.
, and
Bhavnani
,
S. H.
,
2018
, “
Experimental Study of Augmented Flow Boiling in a Dielectric Fluid Due to Backward and Forward Facing Stepped Microchannels
,”
Int. J. Heat Mass Transfer
,
124
, pp.
484
490
.10.1016/j.ijheatmasstransfer.2018.03.057
10.
Karayiannis
,
T. G.
, and
Mahmoud
,
M. M.
,
2017
, “
Flow Boiling in Microchannels: Fundamentals and Applications
,”
Appl. Therm. Eng.
,
115
, pp.
1372
1397
.10.1016/j.applthermaleng.2016.08.063
11.
Shojaeian
,
M.
, and
Koşar
,
A.
,
2015
, “
Pool Boiling and Flow Boiling on Micro- and Nanostructured Surfaces
,”
Exp. Therm. Fluid Sci.
,
63
, pp.
45
73
.10.1016/j.expthermflusci.2014.12.016
12.
Sujith Kumar
,
C. S.
,
Udaya Kumar
,
G.
,
Mata Arenales
,
M. R.
,
Hsu
,
C.-C.
,
Suresh
,
S.
, and
Chen
,
P.-H.
,
2018
, “
Elucidating the Mechanisms Behind the Boiling Heat Transfer Enhancement Using Nano-Structured Surface Coatings
,”
Appl. Therm. Eng.
,
137
, pp.
868
891
.10.1016/j.applthermaleng.2018.03.092
13.
Heng
,
Y.
,
Luo
,
J.
,
Mo
,
D.
,
Fu
,
Y.
,
,
S.
, and
Wang
,
Y.
,
2020
, “
Porous Surfaces With Structural Gradient: Enhancing Boiling Heat Transfer and Its Application in Phase-Change Devices
,”
Chin. Sci. Bull.
,
65
(
17
), pp.
1638
1652
.10.1360/TB-2019-0380
14.
Sun
,
Y.
,
Zhang
,
L.
,
Xu
,
H.
, and
Zhong
,
X.
,
2011
, “
Flow Boiling Enhancement of FC-72 From Microporous Surfaces in Minichannels
,”
Exp. Therm. Fluid Sci.
,
35
(
7
), pp.
1418
1426
.10.1016/j.expthermflusci.2011.05.010
15.
Morshed
,
A. K. M. M.
,
Yang
,
F.
,
Yakut Ali
,
M.
,
Khan
,
J. A.
, and
Li
,
C.
,
2012
, “
Enhanced Flow Boiling in a Microchannel With Integration of Nanowires
,”
Appl. Therm. Eng.
,
32
, pp.
68
75
.10.1016/j.applthermaleng.2011.08.031
16.
Li
,
D.
,
Wu
,
G. S.
,
Wang
,
W.
,
Wang
,
Y. D.
,
Liu
,
D.
,
Zhang
,
D. C.
,
Chen
,
Y. F.
,
Peterson
,
G. P.
, and
Yang
,
R.
,
2012
, “
Enhancing Flow Boiling Heat Transfer in Microchannels for Thermal Management With Monolithically-Integrated Silicon Nanowires
,”
Nano Lett.
,
12
(
7
), pp.
3385
3390
.10.1021/nl300049f
17.
Trieu Phan
,
H.
,
Caney
,
N.
,
Marty
,
P.
,
Colasson
,
S.
, and
Gavillet
,
J.
,
2012
, “
Flow Boiling of Water on Nanocoated Surfaces in a Microchannel
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
2
), p.
020901
.10.1115/1.4004935
18.
Sujith Kumar
,
C. S.
,
Suresh
,
S.
,
Yang
,
L.
,
Yang
,
Q.
, and
Aravind
,
S.
,
2014
, “
Flow Boiling Heat Transfer Enhancement Using Carbon Nanotube Coatings
,”
Appl. Therm. Eng.
,
65
(
1–2
), pp.
166
175
.10.1016/j.applthermaleng.2013.12.053
19.
Lin
,
Y.
,
Luo
,
Y.
,
Li
,
J.
, and
Li
,
W.
,
2021
, “
Heat Transfer, Pressure Drop and Flow Patterns of Flow Boiling on Heterogeneous Wetting Surface in a Vertical Narrow Microchannel
,”
Int. J. Heat Mass Transfer
,
172
, p.
121158
.10.1016/j.ijheatmasstransfer.2021.121158
20.
Li
,
W.
,
Li
,
J.
,
Feng
,
Z.
,
Zhou
,
K.
, and
Wu
,
Z.
,
2017
, “
Local Heat Transfer in Subcooled Flow Boiling in a Vertical Mini-Gap Channel
,”
Int. J. Heat Mass Transfer
,
110
, pp.
796
804
.10.1016/j.ijheatmasstransfer.2017.03.086
21.
Zhou
,
K.
,
Coyle
,
C.
,
Li
,
J.
,
Buongiorno
,
J.
, and
Li
,
W.
,
2017
, “
Flow Boiling in Vertical Narrow Microchannels of Different Surface Wettability Characteristics
,”
Int. J. Heat Mass Transfer
,
109
, pp.
103
114
.10.1016/j.ijheatmasstransfer.2017.01.111
22.
Li
,
W.
,
Zhou
,
K.
,
Li
,
J.
,
Feng
,
Z.
, and
Zhu
,
H.
,
2018
, “
Effects of Heat Flux, Mass Flux and Two-Phase Inlet Quality on Flow Boiling in a Vertical Superhydrophilic Microchannel
,”
Int. J. Heat Mass Transfer
,
119
, pp.
601
613
.10.1016/j.ijheatmasstransfer.2017.11.145
23.
Li
,
W.
,
Lin
,
Y.
,
Zhou
,
K.
,
Li
,
J.
, and
Zhu
,
J.
,
2019
, “
Local Heat Transfer of Saturated Flow Boiling in Vertical Narrow Microchannel
,”
Int. J. Therm. Sci.
,
145
, p.
105996
.10.1016/j.ijthermalsci.2019.105996
24.
Wenzel
,
R. N.
,
1936
, “
Resistance of Solid Surfaces to Wetting by Water
,”
Ind. Eng. Chem.
,
28
(
8
), pp.
988
994
.10.1021/ie50320a024
25.
Cassie
,
A.
, and
Baxter
,
S.
,
1944
, “
Wettability of Porous Surfaces
,”
Trans. Faraday Soc.
,
40
, pp.
546
551
.10.1039/tf9444000546
26.
Kew
,
P. A.
, and
Cornwell
,
K.
,
1997
, “
Correlations for the Prediction of Boiling Heat Transfer in Small-Diameter Channels
,”
Appl. Thermal Eng.
,
17
(
8–10
), pp.
705
715
.10.1016/S1359-4311(96)00071-3
27.
Harirchian
,
T.
, and
Garimella
,
S. V.
,
2010
, “
A Comprehensive Flow Regime Map for Microchannel Flow Boiling With Quantitative Transition Criteria
,”
Int. J. Heat Mass Transfer
,
53
(
13–14
), pp.
2694
2702
.10.1016/j.ijheatmasstransfer.2010.02.039
28.
Chen
,
J. C.
,
1966
, “
Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow
,”
Ind. Eng. Chem. Process Des. Dev.
,
5
(
3
), pp.
322
329
.10.1021/i260019a023
29.
Betz
,
A. R.
,
Jenkins
,
J.
,
Kim
,
C.-J. C.
, and
Attinger
,
D.
,
2013
, “
Boiling Heat Transfer on Superhydrophilic, Superhydrophobic, and Superbiphilic Surfaces
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
733
741
.10.1016/j.ijheatmasstransfer.2012.10.080
30.
Deng
,
D.
,
Chen
,
R.
,
Tang
,
Y.
,
Lu
,
L.
,
Zeng
,
T.
, and
Wan
,
W.
,
2015
, “
A Comparative Study of Flow Boiling Performance in Reentrant Copper Microchannels and Reentrant Porous Microchannels With Multi-Scale Rough Surface
,”
Int. J. Multiphase Flow
,
72
, pp.
275
287
.10.1016/j.ijmultiphaseflow.2015.01.004
31.
Jia
,
Y. T.
,
Xia
,
G. D.
,
Zong
,
L. X.
,
Ma
,
D. D.
, and
Tang
,
Y. X.
,
2018
, “
A Comparative Study of Experimental Flow Boiling Heat Transfer and Pressure Drop Characteristics in Porous-Wall Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
127
, pp.
818
833
.10.1016/j.ijheatmasstransfer.2018.06.090
32.
Zhang
,
L.
,
Wang
,
E. N.
,
Goodson
,
K. E.
, and
Kenny
,
T. W.
,
2005
, “
Phase Change Phenomena in Silicon Microchannels
,”
Int. J. Heat Mass Transfer
,
48
(
8
), pp.
1572
1582
.10.1016/j.ijheatmasstransfer.2004.09.048
33.
Hsu
,
Y.
,
1962
, “
On the Size Range of Active Nucleation Cavities on a Heating Surface
,”
ASME J. Heat Transfer-Trans. ASME
,
84
(
3
), pp.
207
213
.10.1115/1.3684339
34.
Basu
,
N.
,
Warrier
,
G. R.
, and
Dhir
,
V. K.
,
2002
, “
Onset of Nucleate Boiling and Active Nucleation Site Density During Subcooled Flow Boiling
,”
ASME J. Heat Transfer-Trans. ASME
,
124
(
4
), pp.
717
728
.10.1115/1.1471522
35.
Liu
,
D.
,
Lee
,
P.-S.
, and
Garimella
,
S. V.
,
2005
, “
Prediction of the Onset of Nucleate Boiling in Microchannel Flow
,”
Int. J. Heat Mass Transfer
,
48
(
25–26
), pp.
5134
5149
.10.1016/j.ijheatmasstransfer.2005.07.021
36.
Okawa
,
T.
,
2012
, “
Onset of Nucleate Boiling in Mini and Microchannels: A Brief Review
,”
Front. Heat Mass Transfer
,
3
(
1
), pp.
1
8
.10.5098/hmt.v3.1.300
37.
Lee
,
P.-S.
, and
Garimella
,
S. V.
,
2006
, “
Thermally Developing Flow and Heat Transfer in Rectangular Microchannels of Different Aspect Ratios
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
3060
3067
.10.1016/j.ijheatmasstransfer.2006.02.011
38.
Phan
,
H. T.
,
Caney
,
N.
,
Marty
,
P.
,
Colasson
,
S.
, and
Gavillet
,
J.
,
2009
, “
Surface Wettability Control by Nanocoating: The Effects on Pool Boiling Heat Transfer and Nucleation Mechanism
,”
Int. J. Heat Mass Transfer
,
52
(
23–24
), pp.
5459
5471
.10.1016/j.ijheatmasstransfer.2009.06.032
You do not currently have access to this content.