Abstract

This paper presents the heat transfer coefficient, pressure gradient, and flow pattern of R1234yf in a microchannel tube. Both heat transfer coefficient and pressure gradient are presented against real saturation pressure, while flow pattern captures at the exit of data points are presented in the same plot. The experiment was conducted on a 24-port microchannel tube with an average hydraulic diameter of 0.643 mm. The experiment covers mass flux from 100 to 200 kg m−2s−1, heat flux from 0 to 6 kW m−2, vapor quality from 0 to 1, and inlet saturation temperature from 10 to 30 °C. Comparing the correlations to the HTC measurements at very low quality (about 0.1), Gorenflo, D., and Kenning, D. (2010, Pool Boiling, in: VDI Heat Atlas, 2nd ed, Springer, pp. 757–788) agree with the results. As vapor quality increases, pressure gradient increases. The adiabatic pressure gradient is a strong function of mass flux and saturation pressure (temperature). Flow patterns of R1234yf are also affected by mass flux and saturation pressure. The heat transfer coefficient is a strong function of mass flux and heat flux. The saturation temperature has a smaller effect on HTC in the condition range (10 – 30 °C). Under the test range, the accelerating pressure drop is insignificant compared to friction. Comparing to the results, Mishima, K., and Hibiki, T. (1996, “Some Characteristics of Air-Water Two-Phase Flow in Small Diameter Vertical Tubes,” Int. J. Multiph. Flow, 22(4), pp. 703–712) and Muller-Steinhagen, H., and Heck, K. (1986, “A Simple Friction Pressure Drop Correlation for Two-Phase Flow in Pipes,” Accessed March 1, 2018)., 20, pp. 297–308.) have small mean absolute error (MAE) to predict local pressure gradient. For the heat transfer coefficient, Sun, L., and Mishima, K. (2009, “An Evaluation of Prediction Methods for Saturated Flow Boiling Heat Transfer in Mini-Channels,” Int. J. Heat Mass Transf, 52(23–24), pp. 5323–5329) and Gungor, K. E., and Winterton, R. H. S. (1986, “A General Correlation for Flow Boiling in Tubes and Annuli,” Int. J. Heat Mass Transf, 29(3), pp. 351–358) have an MAE less than 30%.

References

1.
Li
,
H.
, and
Hrnjak
,
P.
,
2017
, “
Measurement of Heat Transfer Coefficient and Pressure Drop During Evaporation of R134a in New Type Facility With One Pass Flow Through Microchannel Tube
,”
Int. J. Heat Mass Transfer
,
115
, pp.
502
512
.10.1016/j.ijheatmasstransfer.2017.07.066
2.
Li
,
H.
, and
Hrnjak
,
P.
,
2019
, “
Flow Visualization of R32 in Parallel-Port Microchannel Tube
,”
Int. J. Heat Mass Transfer
,
128
, pp.
1
11
.10.1016/j.ijheatmasstransfer.2018.08.120
3.
Li
,
H.
, and
Hrnjak
,
P.
,
2018
, “
Heat Transfer and Pressure Drop of R32 Evaporating in One Pass Microchannel Tube With Parallel Channels
,”
Int. J. Heat Mass Transfer
,
127
, pp.
526
540
.10.1016/j.ijheatmasstransfer.2018.08.062
4.
Cavallini
,
A.
,
Del Col
,
D.
,
Matkovic
,
M.
, and
Rossetto
,
L.
,
2009
, “
Pressure Drop During Two-Phase Flow of R134a and R32 in a Single Minichannel
,”
ASME J. Heat Transfer
,
131
(
3
), p.
033107
.10.1115/1.3056556
5.
Ramirez-Rivera
,
F.
,
Lopez-Belchi
,
A.
,
Vera-Garcia
,
F.
,
Garcia-Cascales
,
J. R.
,
Illan-Gamez
,
F.
,
Ramírez-Rivera
,
F.
,
Opez-Belchí
,
A. L.
,
Vera-García
,
F.
,
García-Cascales
,
J. R.
,
Ill An
,
F.
, and
Omez
,
G.
,
2015
, “
Two Phase Flow Pressure Drop in Multiport Mini-Channel Tubes Using R134a and R32 as Working Fluids
,”
Int. J. Therm. Sci.
,
92
, pp.
17
33
.10.1016/j.ijthermalsci.2015.01.014
6.
Li
,
M.
,
Dang
,
C.
, and
Hihara
,
E.
,
2012
, “
Flow Boiling Heat Transfer of HFO1234yf and R32 Refrigerant Mixtures in a Smooth Horizontal Tube: Part I. Experimental Investigation
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3437
3446
.10.1016/j.ijheatmasstransfer.2012.03.002
7.
Park
,
K.-J.
, and
Jung
,
D.
,
2010
, “
Nucleate Boiling Heat Transfer Coefficients of R1234yf on Plain and Low Fin Surfaces
,”
Int. J. Refrig.
,
33
(
3
), pp.
553
557
.10.1016/j.ijrefrig.2009.12.020
8.
Gorenflo
,
D.
, and
Kenning
,
D.
,
2010
,
Pool Boiling, in: VDI Heat Atlas
, 2nd ed,
Springer
, Berlin, pp.
757
788
.
9.
Del Col
,
D.
,
Bortolin
,
S.
,
Torresin
,
D.
, and
Cavallini
,
A.
,
2013
, “
Flow Boiling of R1234yf in a 1 mm Diameter Channel
,”
Int. J. Refrig.
,
36
(
2
), pp.
353
362
.10.1016/j.ijrefrig.2012.10.026
10.
Illán-Gómez
,
F.
,
López-Belchí
,
A.
,
García-Cascales
,
J. R.
, and
Vera-García
,
F.
,
2015
, “
Experimental Two-Phase Heat Transfer Coefficient and Frictional Pressure Drop Inside Mini-Channels During Condensation With R1234yf and R134a
,”
Int. J. Refrig.
,
51
, pp.
12
23
.10.1016/j.ijrefrig.2014.11.014
11.
Anwar
,
Z.
,
Palm
,
B.
, and
Khodabandeh
,
R.
,
2015
, “
Flow Boiling Heat Transfer, Pressure Drop and Dryout Characteristics of R1234yf: Experimental Results and Predictions
,”
Exp. Therm. Fluid Sci.
,
66
, pp.
137
149
.10.1016/j.expthermflusci.2015.03.021
12.
Sempértegui-Tapia
,
D. F.
, and
Ribatski
,
G.
,
2017
, “
Flow Boiling Heat Transfer of R134a and Low GWP Refrigerants in a Horizontal Micro-Scale Channel
,”
Int. J. Heat Mass Transfer
,
108
, pp.
2417
2432
.10.1016/j.ijheatmasstransfer.2017.01.036
13.
Li
,
J.
,
Dang
,
C.
, and
Hihara
,
E.
,
2017
, “
Up-Flow Boiling of R1234yf in Aluminum Multi-Port Extruded Tubes
,”
Int. J. Heat Mass Transfer
,
114
, pp.
826
836
.10.1016/j.ijheatmasstransfer.2017.05.099
14.
Zhang
,
J.
,
Desideri
,
A.
,
Kærn
,
M. R.
,
Ommen
,
T. S.
,
Wronski
,
J.
, and
Haglind
,
F.
,
2017
, “
Flow Boiling Heat Transfer and Pressure Drop Characteristics of R134a, R1234yf and R1234ze in a Plate Heat Exchanger for Organic Rankine Cycle Units
,”
Int. J. Heat Mass Transfer
,
108
, pp.
1787
1801
.10.1016/j.ijheatmasstransfer.2017.01.026
15.
Kedzierski
,
M. A.
, and
Kang
,
D.
,
2018
, “
Horizontal Convective Boiling of R1234yf, R134a, and R450A Within a Micro-Fin Tube
,”
Int. J. Refrig.
,
88
, pp.
538
551
.10.1016/j.ijrefrig.2018.02.021
16.
Li
,
H.
, and
Hrnjak
,
P.
,
2017
, “
Effect of Periodic Reverse Flow on the Heat Transfer Performance of Microchannel Evaporators
,”
Int. J. Refrig.
,
84
, pp.
309
320
.10.1016/j.ijrefrig.2017.08.017
17.
Ye
,
X.
,
Zhao
,
Y.
, and
Quan
,
Z.
,
2018
, “
Experimental Study on Heat Dissipation for Lithium-Ion Battery Based on Micro Heat Pipe Array (MHPA)
,”
Appl. Therm. Eng.
,
130
, pp.
74
82
.10.1016/j.applthermaleng.2017.10.141
18.
Li
,
H.
, and
Hrnjak
,
P.
,
2017
, “
Modeling of Bubble Dynamics in Single Diabatic Microchannel
,”
Int. J. Heat Mass Transfer
,
107
, pp.
96
104
.10.1016/j.ijheatmasstransfer.2016.11.030
19.
Mishima
,
K.
, and
Hibiki
,
T.
,
1996
, “
Some Characteristics of Air-Water Two-Phase Flow in Small Diameter Vertical Tubes
,”
Int. J. Multiph. Flow
,
22
(
4
), pp.
703
712
.10.1016/0301-9322(96)00010-9
20.
Muller-Steinhagen
,
H.
, and
Heck
,
K.
,
1986
, “
A Simple Friction Pressure Drop Correlation for Two-Phase Flow in Pipes
,” Accessed Mar. 1, 2018, pp.
297
308
, http://multifasico.usuarios.rdc.puc-rio.br/MF-Muller-Steinhagen-Friction-Factor.pdf
21.
Sun
,
L.
, and
Mishima
,
K.
,
2009
, “
An Evaluation of Prediction Methods for Saturated Flow Boiling Heat Transfer in Mini-Channels
,”
Int. J. Heat Mass Transfer
,
52
(
23–24
), pp.
5323
5329
.10.1016/j.ijheatmasstransfer.2009.06.041
22.
Gungor
,
K. E.
, and
Winterton
,
R. H. S.
,
1986
, “
A General Correlation for Flow Boiling in Tubes and Annuli
,”
Int. J. Heat Mass Transfer
,
29
(
3
), pp.
351
358
.10.1016/0017-9310(86)90205-X
23.
Cooper
,
M. G.
,
1984
, “
Heat Flow Rates in Saturated Nucleate Pool Boiling-A Wide-Ranging Examination Using Reduced Properties
,”
Adv. Heat Transfer
,
16
, pp.
157
239
.10.1016/S0065-2717(08)70205-3
24.
CHurchill
,
S. W.
,
1977
, “
Friction-Factor Equation Spans All Fluid-Flow Regimes
,”
Chem. Eng.
,
84
, pp.
91
92
.
25.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1929
, “
Heat Transfer in Automobile Radiators of the Tubular Type
,”
Int. Commun. Heat Mass Transfer
,
12
(
1
), pp.
3
22
.10.1016/0735-1933(85)90003-X
26.
Li
,
H.
, and
Hrnjak
,
P.
,
2019
, “
Heat Transfer Coefficient, Pressure Drop, and Flow Patterns of R1234ze(E) evaporating in Microchannel Tube
,”
Int. J. Heat Mass Transfer
,
138
, pp.
1368
1386
.10.1016/j.ijheatmasstransfer.2019.05.036
27.
Zivi
,
S. M.
,
1964
, “
Estimation of Steady-State steam void Fraction by Means of the Principle of Minimum Entropy Production
,”
ASME J. Heat Transfer
,
86
(
2
), pp.
251
252
.10.1115/1.3687113
28.
Nino
,
V. G.
,
Hrnjak
,
P. S.
, and
Newell
,
T. A.
,
2002
,
Characterization of Two-Phase Flow in Microchannels
,
Air Conditioning and Refrigeration Center
, Urbana, IL, Report No. TR-202,
29.
Cicchitti
,
A.
,
Lombardi
,
C.
,
Silvestri
,
M.
,
Soldaini
,
G.
, and
Zavalluilli
,
R.
,
1960
, “
Two-Phase Cooling Experiments-Pressure Drop, Heat Transfer and Burnout Measurements
,”
Energ. Nucl.
,
7
, pp.
407
425
.https://www.osti.gov/biblio/4181977
30.
Lockhart
,
R. W.
, and
Martinelli
,
R. C.
,
1949
, “
Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes
,”
Chem. Eng. Prog.
,
45
, pp.
39
48
.https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1857446
31.
Del Col
,
D.
,
Bisetto
,
A.
,
Bortolato
,
M.
,
Torresin
,
D.
, and
Rossetto
,
L.
,
2013
, “
Experiments and Updated Model for Two Phase Frictional Pressure Drop Inside Minichannels
,”
Int. J. Heat Mass Transfer
,
67
, pp.
326
337
.10.1016/j.ijheatmasstransfer.2013.07.093
32.
Cavallini
,
A.
,
Del Col
,
D.
,
Matkovic
,
M.
, and
Rossetto
,
L.
,
2009
, “
Frictional Pressure Drop During Vapour-Liquid Flow in Minichannels: Modelling and Experimental Evaluation
,”
Int. J. Heat Fluid Flow
,
30
(
1
), pp.
131
139
.10.1016/j.ijheatfluidflow.2008.09.003
33.
Hwang
,
Y. W.
, and
Kim
,
M. S.
,
2006
, “
The Pressure Drop in Microtubes and the Correlation Development
,”
Int. J. Heat Mass Transfer
,
49
(
11–12
), pp.
1804
1812
.10.1016/j.ijheatmasstransfer.2005.10.040
34.
Sun
,
L.
, and
Mishima
,
K.
,
2009
, “
Evaluation Analysis of Prediction Methods for Two-Phase Flow Pressure Drop in Mini-Channels
,”
Int. J. Multiph. Flow
,
35
(
1
), pp.
47
54
.10.1016/j.ijmultiphaseflow.2008.08.003
35.
Chen
,
I. Y.
,
Yang
,
K. S.
,
Chang
,
Y. J.
, and
Wang
,
C. C.
,
2001
, “
Two-Phase Pressure Drop of Air-Water and R-410A in Small Horizontal Tubes
,”
Int. J. Multiph. Flow
,
27
(
7
), pp.
1293
1299
.10.1016/S0301-9322(01)00004-0
36.
Friedel
,
L.
,
1979
, “
Improved Friction Pressure Drop Correlations for Horizontal and Vertical Two-Phase Pipe Flow
,”
Eur. Two-Phase Gr. Meet
, in: Ispra, Italy.
37.
Kim
,
S. M.
, and
Mudawar
,
I.
,
2012
, “
Universal Approach to Predicting Two-Phase Frictional Pressure Drop for Adiabatic and Condensing Mini/Micro-Channel Flows
,”
Int. J. Heat Mass Transfer
,
55
(
11–12
), pp.
3246
3261
.10.1016/j.ijheatmasstransfer.2012.02.047
38.
Kandlikar
,
S. G.
,
1990
, “
A General Correlation for Saturated Two-Phase Flow Boiling Heat Transfer Inside Horizontal and Vertical Tubes
,”
ASME J. Heat Transfer
,
112
(
1
), pp.
219
228
.10.1115/1.2910348
39.
Shah
,
R. K.
,
1986
, “
Classification of Heat Exchangers
,”
Heat Exch. Therm. Fundam. Des
,
Hemisphere Publishing Corporation
, Wiley, Hoboken, NJ, pp.
9
46
.
40.
Shah
,
M. M.
,
2017
, “
Unified Correlation for Heat Transfer During Boiling in Plain Mini/Micro and Conventional Channels
,”
Int. J. Refrig.
,
74
, pp.
606
626
.10.1016/j.ijrefrig.2016.11.023
41.
Kim
,
S.-M.
, and
Mudawar
,
I.
,
2013
, “
Universal Approach to Predicting Saturated Flow Boiling Heat Transfer in Mini/micro-Channels – Part II. Two-Phase Heat Transfer Coefficient
,”
Int. J. Heat Mass Transfer
,
64
, pp.
1239
1256
.10.1016/j.ijheatmasstransfer.2013.04.014
42.
Basu
,
S.
,
Ndao
,
S.
,
Michna
,
G. J.
,
Peles
,
Y.
, and
Jensen
,
M. K.
,
2011
, “
Flow Boiling of R134a in Circular Microtubes—Part I: Study of Heat Transfer Characteristics
,”
ASME J. Heat Transfer
,
133
(
5
), p.
051502
.10.1115/1.4003159
You do not currently have access to this content.