Abstract

The influence of real gas radiation on the thermal and hydrodynamic stability of a two-dimensional layer of radiatively participating H2O and/or CO2 heated from below is investigated. The nongray radiation effects of the two species are treated rigorously using a global spectral approach, the Spectral Line Weighted-sum-of-gray-gases model. The phenomena are explored by solving the full coupled laminar equations of motion, energy, and radiative transfer from the low-Rayleigh number, pure conduction-radiation regime through the onset of buoyancy-induced flow to the developed Bénard convection regime. The evolution of the thermal, hydrodynamic, and radiative heating fields is studied, and the critical Rayleigh number is characterized as a function of participating gas species mole fraction, average layer gas temperature, layer thickness, wall emissivity, and total pressure. It is found that participating radiation in the medium has the effect of stabilizing the layer, delaying transition from a stable conduction regime to buoyancy-induced flow. The development of convective flow and temperature, along with the radiative heating are presented. It is found that the critical Rayleigh number in the radiatively participating gas layer can be more than an order of magnitude higher than the classical convection-only scenario. The onset of instability is found to depend on the species mole fractions, average gas temperature in the layer, wall emissivity, layer thickness, and total pressure. Generally, all other variables being the same, H2O has a greater stabilizing influence on the layer than CO2.

References

1.
Koschmieder
,
E. L.
,
1993
,
Bénard Cells and Taylor Vortices
,
Cambridge
,
London
.
2.
Suo-Anttila
,
A. J.
, and
Catton
,
I.
,
1975
, “
The Effect of a Stabilizing Temperature Gradient on Heat Transfer From a Molten Fuel Layer With Volumetric Heating
,”
ASME J. Heat Transfer-Trans. ASME
,
97
(
4
), pp.
544
548
.10.1115/1.3450426
3.
Goody
,
R. M.
,
1956
, “
The Influence of Radiative Transfer on Cellular Convection
,”
J. Fluid Mech.
,
1
(
4
), pp.
424
435
.10.1017/S0022112056000263
4.
Spiegel
,
E. A.
,
1960
, “
The Convective Instability of a Radiating Fluid Layer
,”
Astrophys. J.
,
132
, pp.
716
728
.10.1086/146977
5.
Christophorides
,
C.
, and
Davis
,
S. H.
,
1970
, “
Thermal Instability With Radiative Transfer
,”
Phys. Fluids
,
13
(
2
), pp.
222
226
.10.1063/1.1692914
6.
Lienhard
,
J. H. V.
,
1990
, “
Thermal Radiation in Rayleigh-Bénard Instability
,”
ASME J. Heat Transfer-Trans. ASME
,
112
(
1
), pp.
100
109
.10.1115/1.2910329
7.
Lan
,
C. H.
,
Ezekoye
,
O. A.
,
Howell
,
J. R.
, and
Ball
,
K. S.
,
2003
, “
Stability Analysis for Three-Dimensional Rayleigh-Bénard Convection With Radiatively Participating Medium Using Spectral Methods
,”
Int. J. Heat Mass Transfer
,
46
(
8
), pp.
1371
1383
.10.1016/S0017-9310(02)00422-2
8.
Arpaci
,
V. S.
, and
Gozum
,
D.
,
1973
, “
Thermal Stability of Radiating Fluids: The Bénard Problem
,”
Phys. Fluids
,
16
(
5
), pp.
581
588
.10.1063/1.1694391
9.
Bdéoui
,
F.
, and
Soufiani
,
A.
,
1997
, “
The Onset of Rayleigh-Bénard Instability in Molecular Radiating Gases
,”
Phys. Fluids
,
9
(
12
), pp.
3858
3872
.10.1063/1.869486
10.
Cholake
,
S.
,
Sundararajan
,
T.
, and
Venkateshan
,
S. P.
,
2021
, “
Onset of Natural Convection in a Differentially Heated Layer of Gray and Non-Gray Gas Mixtures
,”
Sādhanā
,
46
(
1
), pp.
1
15
.10.1007/s12046-020-01542-8
11.
Gille
,
J.
, and
Goody
,
R.
,
1964
, “
Convection in a Radiating Gas
,”
J. Fluid Mech.
,
20
(
1
), pp.
47
79
.10.1017/S002211206400101X
12.
Hutchison
,
J. E.
, and
Richards
,
R. F.
,
1999
, “
Effect of Nongray Gas Radiation on Thermal Stability in Carbon Dioxide
,”
J. Thermophys. Heat Transfer
,
13
(
1
), pp.
25
32
.10.2514/2.6425
13.
Prasanna
,
S.
, and
Venkateshan
,
S. P.
,
2014
, “
Convection Induced by Radiative Cooling of a Layer of Participating Medium
,”
Phys. Fluids
,
26
(
5
), p.
056603
.10.1063/1.4874343
14.
Rothman
,
L. S.
,
Gordon
,
I. E.
,
Barber
,
R. J.
,
Dothe
,
H.
,
Gamache
,
R. R.
,
Goldman
,
A.
,
Perevalov
,
V. I.
,
Tashkun
,
S. A.
, and
Tennyson
,
J.
,
2010
, “
HITEMP, the High-Temperature Molecular Spectroscopic Database
,”
J. Quant. Spectr. Rad. Transfer
,
111
(
15
), pp.
2139
2150
.10.1016/j.jqsrt.2010.05.001
15.
Tashkun
,
S. A.
, and
Perevalov
,
V. I.
,
2011
, “
CDSD-4000: High-Resolution, High-Temperature Carbon Dioxide Spectroscopic Databank
,”
J. Quant. Spectr. Rad Transfer,
112
, pp.
1403
1410
.
16.
Denison
,
M. K.
, and
Webb
,
B. W.
,
1993
, “
A Spectral Line-Based Weighted-Sum-of-Gray-Gases Model for Arbitrary RTE Solvers
,”
ASME J. Heat Transfer-Trans. ASME
,
115
(
4
), pp.
1004
1012
.10.1115/1.2911354
17.
Solovjov
,
V. P.
,
Webb
,
B. W.
, and
André
,
F.
,
2018
, “
Radiative Properties of Gases
,”
Handbook of Thermal Science and Engineering
,
F. A.
Kulacki
, ed., Vol.
2
,
Springer
,
New York
, pp.
1069
1142
.
18.
Webb
,
B. W.
,
Solovjov
,
V. P.
, and
André
,
F.
,
2019
, “
The Spectral Line Weighted-Sum-of-Gray-Gases (SLW) Model for Prediction of Radiative Transfer in Molecular Gases
,”
Advances in Heat Transfer
,
E. M.
Sparrow
,
J. P.
Abraham
,
J. M.
Gorman
, and
W. J.
Minkowycz
, eds., Vol.
51
,
Academic Press
,
New York
, pp.
207
298
.
19.
Denison
,
M. K.
, and
Webb
,
B. W.
,
1993
, “
An Absorption-Line Blackbody Distribution Function for Efficient Calculation of Gas Radiative Transfer
,”
J. Quant. Spectr. Rad. Transfer
,
50
(
5
), pp.
499
510
.10.1016/0022-4073(93)90043-H
20.
Pearson
,
J.
,
Webb
,
B. W.
,
Solovjov
,
V. P.
, and
Ma
,
J.
,
2013
, “
Updated Correlation of the Absorption-Line Blackbody Distribution Function for H2O Based on the HITEMP2010 Database
,”
J. Quant. Spectr. Rad. Transfer
,
128
, pp.
10
17
.10.1016/j.jqsrt.2012.07.016
21.
Pearson
,
J.
,
Webb
,
B. W.
,
Solovjov
,
V. P.
, and
Ma
,
J.
,
2014
, “
Efficient Representation of the Absorption Line Blackbody Distribution Function for H2O, CO2, and CO at Variable Temperature, Mole Fraction, and Total Pressure
,”
J. Quant. Spectr. Rad. Transfer
,
138
, pp.
82
96
.10.1016/j.jqsrt.2014.01.019
22.
Solovjov
,
V. P.
,
André
,
F.
,
Lemonnier
,
D.
, and
Webb
,
B. W.
,
2017
, “
The Rank Correlated SLW Model of Gas Radiation in Non-Uniform Media
,”
J. Quant. Spectr. Rad. Transfer
,
197
, pp.
26
44
.10.1016/j.jqsrt.2017.01.034
23.
Denison
,
M. K.
, and
Webb
,
B. W.
,
1995
, “
The Spectral-Line Weighted-Sum-of-Gray-Gases Model for H2O/CO2 Mixtures
,”
ASME J. Heat Transfer-Trans. ASME
,
117
(
3
), pp.
788
798
.10.1115/1.2822652
24.
Solovjov
,
V. P.
, and
Webb
,
B. W.
,
2000
, “
SLW Modeling of Radiative Transfer in Multicomponent Gas Mixtures
,”
J. Quant. Spectr. Rad. Transfer
,
65
(
4
), pp.
655
672
.10.1016/S0022-4073(99)00133-8
25.
Solovjov
,
V. P.
, and
Webb
,
B. W.
,
2001
, “
An Efficient Method for Modeling Radiative Transfer in Multicomponent Gas Mixtures With Soot
,”
ASME J. Heat Transfer-Trans. ASME
,
123
(
3
), pp.
450
457
.10.1115/1.1350824
26.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, DC
.
27.
Raithby
,
G. D.
, and
Chui
,
E. J.
,
1990
, “
A Finite Volume Method for Predicting Radiant Heat Transfer in Enclosures With Participating Media
,”
ASME J. Heat Transfer-Trans. ASME
,
112
(
2
), pp.
415
423
.10.1115/1.2910394
28.
Chapman
,
S.
, and
Cowling
,
T. G.
,
1958
,
The Mathematical Theory of Non-Uniform Gases
,
University Press
,
Cambridge
.
29.
AIChE
,
2020
, “
DIPPR: Design Institute for Physical Properties
,”
American Institute of Chemical Engineers
,
New York
, accessed June 30, 2021, https://www.aiche.org/dippr
30.
Solovjov
,
V. P.
,
Webb
,
B. W.
, and
André
,
F.
,
2018
, “
The Rank Correlated FSK Model for Prediction of Gas Radiation in Non-Uniform Media, and Its Relationship to the Rank Correlated SLW Model
,”
J. Quant. Spectr. Rad. Transfer
,
214
, pp.
120
132
.10.1016/j.jqsrt.2018.04.026
31.
Webb
,
B. W.
,
Solovjov
,
V. P.
, and
André
,
F.
,
2018
, “
An Exploration of the Influence of Spectral Model Parameters on the Accuracy of the Rank Correlated SLW Model
,”
J. Quant. Spectr. Rad. Transfer
,
218
, pp.
161
170
.10.1016/j.jqsrt.2018.06.023
You do not currently have access to this content.