Abstract

Convective heat transfer and effect of nonlinear wall slip are studied analytically in concentric microannulus for viscoelastic fluids obeying the Giesekus constitutive equation. Laminar, thermally, and hydrodynamically fully developed flow is considered. A nonlinear Navier model with nonzero slip critical shear stress is employed for the slip equation at both walls. Critical shear stress will cause three slip flow regimes: no slip condition, slip only at the inner wall, and slip at both walls. Thermal boundary conditions are assumed to be peripherally and axially constant fluxes at the walls. Governing equations are solved to obtain temperature profiles and Nusselt number and effects of slip parameters, elasticity, and Brinkman number are discussed. Two regimes are compared when slip occurs at both walls or only at the inner wall. The results indicate that by increasing slip effect and elasticity, heat transfer between wall and fluid is enhanced, but it decreases by increasing Brinkman number. In the case where the heat flux is dominant in the outer wall, the inner wall Nusselt curve shows a singularity for a critical Brinkman number because at this Brinkman number the bulk temperature will be equal to the wall temperature.

References

1.
Tian
,
W.-C.
, and
Finehout
,
E.
,
2008
, “
Introduction to Microfluidics
,”
Microfluidics for Biological Applications
,
Springer,
Boston, MA, pp.
1
34
.
2.
Karniadakis
,
G.
,
Beskok
,
A.
, and
Aluru
,
N.
,
2006
,
Microflows and Nanoflows: Fundamentals and Simulation
,
Springer Science & Business Media
, New York.
3.
Volpatti
,
L. R.
, and
Yetisen
,
A. K.
,
2014
, “
Commercialization of Microfluidic Devices
,”
Trends Biotechnol.
,
32
(
7
), pp.
347
350
.10.1016/j.tibtech.2014.04.010
4.
Whitesides
,
G. M.
,
2006
, “
The Origins and the Future of Microfluidics
,”
Nature
,
442
(
7101
), pp.
368
373
.10.1038/nature05058
5.
Ghallab
,
Y.
, and
Badawy
,
W.
,
2004
, “
Sensing Methods for Dielectrophoresis Phenomenon: From Bulky Instruments to Lab-on-a-Chip
,”
IEEE Circuits Syst. Mag.
,
4
(
3
), pp.
5
15
.10.1109/MCAS.2004.1337805
6.
Denn
,
M. M.
,
2001
, “
Extrusion Instabilities and Wall Slip
,”
Annu. Rev. Fluid Mech.
,
33
(
1
), pp.
265
287
.10.1146/annurev.fluid.33.1.265
7.
Mohseni
,
M. M.
, and
Rashidi
,
F.
,
2015
, “
Axial Annular Flow of a Giesekus Fluid With Wall Slip Above the Critical Shear Stress
,”
J. Non-Newtonian Fluid Mech.
,
223
, pp.
20
27
.10.1016/j.jnnfm.2015.05.004
8.
Damianou
,
Y.
,
Philippou
,
M.
,
Kaoullas
,
G.
, and
Georgiou
,
G. C.
,
2014
, “
Cessation of Viscoplastic Poiseuille Flow With Wall Slip
,”
J. Non-Newtonian Fluid Mech.
,
203
, pp.
24
37
.10.1016/j.jnnfm.2013.10.004
9.
Chatzimina
,
M.
,
Georgiou
,
G. C.
,
Housiadas
,
K.
, and
Hatzikiriakos
,
S. G.
,
2009
, “
Stability of the Annular Poiseuille Flow of a Newtonian Liquid With Slip Along the Walls
,”
J. Non-Newtonian Fluid Mech.
,
159
(
1–3
), pp.
1
9
.10.1016/j.jnnfm.2008.10.008
10.
Ferrás
,
L.
,
Nóbrega
,
J.
, and
Pinho
,
F.
,
2012
, “
Analytical Solutions for Newtonian and Inelastic Non-Newtonian Flows With Wall Slip
,”
J. Non-Newtonian Fluid Mech.
,
175
, pp.
76
88
.10.1016/j.jnnfm.2012.03.004
11.
Ferrás
,
L. L.
,
Nóbrega
,
J. M.
, and
Pinho
,
F. T.
,
2012
, “
Analytical Solutions for Channel Flows of Phan–Thien–Tanner and Giesekus Fluids Under Slip
,”
J. Non-Newtonian Fluid Mech.
,
171
, pp.
97
105
.10.1016/j.jnnfm.2012.01.009
12.
Kalyon
,
D. M.
, and
Malik
,
M.
,
2012
, “
Axial Laminar Flow of Viscoplastic Fluids in a Concentric Annulus Subject to Wall Slip
,”
Rheol. Acta
,
51
(
9
), pp.
805
820
.10.1007/s00397-012-0641-y
13.
Matthews
,
M.
, and
Hill
,
J.
,
2007
, “
Newtonian Flow With Nonlinear Navier Boundary Condition
,”
Acta Mech.
,
191
(
3–4
), pp.
195
217
.10.1007/s00707-007-0454-8
14.
Kaoullas
,
G.
, and
Georgiou
,
G. C.
,
2013
, “
Newtonian Poiseuille Flows With Slip and Non-Zero Slip Yield Stress
,”
J. Non-Newtonian Fluid Mech.
,
197
, pp.
24
30
.10.1016/j.jnnfm.2013.02.005
15.
Housiadas
,
K. D.
,
2013
, “
Viscoelastic Poiseuille Flows With Total Normal Stress Dependent, Nonlinear Navier Slip at the Wall
,”
Phys. Fluids
,
25
(
4
), p.
043105
.10.1063/1.4799157
16.
Tang
,
H.
, and
Kalyon
,
D. M.
,
2008
, “
Unsteady Circular Tube Flow of Compressible Polymeric Liquids Subject to Pressure-Dependent Wall Slip
,”
J. Rheol.
,
52
(
2
), pp.
507
525
.10.1122/1.2837104
17.
Tang
,
H.
, and
Kalyon
,
D. M.
,
2008
, “
Time-Dependent Tube Flow of Compressible Suspensions Subject to Pressure Dependent Wall Slip: Ramifications on Development of Flow Instabilities
,”
J. Rheol.
,
52
(
5
), pp.
1069
1090
.10.1122/1.2955508
18.
Pereira
,
G.
,
2009
, “
Effect of Variable Slip Boundary Conditions on Flows of Pressure Driven Non-Newtonian Fluids
,”
J. Non-Newtonian Fluid Mech.
,
157
(
3
), pp.
197
206
.10.1016/j.jnnfm.2008.11.012
19.
Damianou
,
Y.
,
Georgiou
,
G. C.
, and
Moulitsas
,
I.
,
2013
, “
Combined Effects of Compressibility and Slip in Flows of a Herschel–Bulkley Fluid
,”
J. Non-Newtonian Fluid Mech.
,
193
, pp.
89
102
.10.1016/j.jnnfm.2012.09.004
20.
Barkhordari
,
M.
, and
Etemad
,
S. G.
,
2007
, “
Numerical Study of Slip Flow Heat Transfer of Non-Newtonian Fluids in Circular Microchannels
,”
Int. J. Heat Fluid Flow
,
28
(
5
), pp.
1027
1033
.10.1016/j.ijheatfluidflow.2007.02.007
21.
Ngoma
,
G. D.
, and
Erchiqui
,
F.
,
2007
, “
Heat Flux and Slip Effects on Liquid Flow in a Microchannel
,”
Int. J. Therm. Sci.
,
46
(
11
), pp.
1076
1083
.10.1016/j.ijthermalsci.2007.02.001
22.
Shojaeian
,
M.
, and
Koşar
,
A.
,
2014
, “
Convective Heat Transfer and Entropy Generation Analysis on Newtonian and Non-Newtonian Fluid Flows Between Parallel-Plates Under Slip Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
70
, pp.
664
673
.10.1016/j.ijheatmasstransfer.2013.11.020
23.
Anand
,
V.
,
2014
, “
Slip Law Effects on Heat Transfer and Entropy Generation of Pressure Driven Flow of a Power Law Fluid in a Microchannel Under Uniform Heat Flux Boundary Condition
,”
Energy
,
76
, pp.
716
732
.10.1016/j.energy.2014.08.070
24.
Kiyasatfar
,
M.
,
2018
, “
Convective Heat Transfer and Entropy Generation Analysis of Non-Newtonian Power-Law Fluid Flows in Parallel-Plate and Circular Microchannels Under Slip Boundary Conditions
,”
Int. J. Therm. Sci.
,
128
, pp.
15
27
.10.1016/j.ijthermalsci.2018.02.013
25.
Mohseni
,
M. M.
,
Tissot
,
G.
, and
Badawi
,
M.
,
2018
, “
Forced Convection Heat Transfer of Giesekus Fluid With Wall Slip Above the Critical Shear Stress in Pipes
,”
Int. J. Heat Fluid Flow
,
71
, pp.
442
450
.10.1016/j.ijheatfluidflow.2018.05.005
26.
Kakac
,
S.
,
Yener
,
Y.
, and
Pramuanjaroenkij
,
A.
,
2013
,
Convective Heat Transfer
,
CRC Press,
Boca Raton, FL.
27.
Pinho
,
F.
, and
Oliveira
,
P.
,
2000
, “
Analysis of Forced Convection in Pipes and Channels With the Simplified Phan-Thien–Tanner Fluid
,”
Int. J. Heat Mass Transfer
,
43
(
13
), pp.
2273
2287
.10.1016/S0017-9310(99)00303-8
28.
Bird
,
R. B.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
,
1987
,
Dynamics of Polymeric Liquids
(Fluid Mechanics), Vol.
1
, Wiley, New York.
29.
Mohseni
,
M. M.
,
Rashidi
,
F.
, and
Movagar
,
M. R. K.
,
2015
, “
Analysis of Forced Convection Heat Transfer for Axial Annular Flow of Giesekus Viscoelastic Fluid
,”
Korean Chem. Eng. Res.
,
53
(
1
), pp.
91
102
.10.9713/kcer.2015.53.1.91
30.
Giesekus
,
H.
,
1983
, “
Stressing Behaviour in Simple Shear Flow as Predicted by a New Constitutive Model for Polymer Fluids
,”
J. Non-Newtonian Fluid Mech.
,
12
(
3
), pp.
367
374
.10.1016/0377-0257(83)85009-5
31.
Giesekus
,
H.
,
1982
, “
A Simple Constitutive Equation for Polymer Fluids Based on the Concept of Deformation-Dependent Tensorial Mobility
,”
J. Non-Newtonian Fluid Mech.
,
11
(
1–2
), pp.
69
109
.10.1016/0377-0257(82)85016-7
32.
Bird
,
R.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
2002
,
Transport Phenomena
, 2nd ed.,
Wiley
, London.
33.
Bejan
,
A.
,
2013
,
Convection Heat Transfer
,
Wiley
, Hoboken, NJ.
34.
Yoo
,
J.
, and
Choi
,
H. C.
,
1989
, “
On the Steady Simple Shear Flows of the One-Mode Giesekus Fluid
,”
Rheol. Acta
,
28
(
1
), pp.
13
24
.10.1007/BF01354764
35.
Schleiniger
,
G.
, and
Weinacht
,
R. J.
,
1991
, “
Steady Poiseuille Flows for a Giesekus Fluid
,”
J. Non-Newtonian Fluid Mech.
,
40
(
1
), pp.
79
102
.10.1016/0377-0257(91)87027-U
36.
Mohseni
,
M. M.
, and
Rashidi
,
F.
,
2010
, “
Viscoelastic Fluid Behavior in Annulus Using Giesekus Model
,”
J. Non-Newtonian Fluid Mech.
,
165
(
21–22
), pp.
1550
1553
.10.1016/j.jnnfm.2010.07.012
37.
Jouyandeh
,
M.
,
Mohseni
,
M. M.
, and
Rashidi
,
F.
,
2017
, “
Tangential Flow Analysis of Giesekus Model in Concentric Annulus With Both Cylinders Rotation
,”
J. Appl. Fluid Mech.
,
10
(
6
), pp.
1
9
.10.29252/jafm.73.245.27051
38.
Coelho
,
P.
, and
Pinho
,
F.
,
2006
, “
Fully-Developed Heat Transfer in Annuli With Viscous Dissipation
,”
Int. J. Heat Mass Transfer
,
49
(
19–20
), pp.
3349
3359
.10.1016/j.ijheatmasstransfer.2006.03.017
You do not currently have access to this content.