Abstract

The numerical characterization of a 10 kWe xenon arc high flux solar simulator is thoroughly presented and performed using two approaches: a forward Monte Carlo ray tracing (MCRT) method and an inverse ray tracing method. Experimental characterization was previously performed for the solar simulator using an indirect flux mapping technique, where the experimental heat flux distribution was obtained at the focal plane and additional 12 planes away from the simulator. For the first numerical characterization method, an in-house MCRT code was used to determine the shape of the xenon arc to best model the simulator. It was determined that an isotropic volumetric source consisting of a hemisphere of 1 mm radius that is attached to a cylinder of 1 mm in radius and 10 mm in length well described the experimental results obtained. The in-house code was then used to generate heat flux maps similar to that obtained experimentally and determine the intensity at the focal plane to be used by the inverse ray tracing method presented for its validation. For the inverse method, intensity interpolation schemes of zeroth and first-order were examined in addition to different solution strategies. It is shown that a first-order interpolation scheme unnecessary complicates the inverse problem, leading to larger errors. In addition, a new approach of constraining the formulated system of equations with an equality constraint that works by eliminating intensity values not tracing back to the ellipsoidal reflector is proposed. This new approach provided intensity values with reduced percentage errors.

References

1.
Gallo
,
A.
,
Marzo
,
A.
,
Fuentealba
,
E.
, and
Alonso
,
E.
,
2017
, “
High Flux Solar Simulators for Concentrated Solar Thermal Research: A Review
,”
Renewable Sustainable Energy Rev.
,
77
, pp.
1385
1402
.10.1016/j.rser.2017.01.056
2.
Steinfeld
,
A.
,
Brack
,
M.
,
Meier
,
A.
,
Weidenkaff
,
A.
, and
Wuillemin
,
D.
,
1998
, “
A Solar Chemical Reactor for Co-Production of Zinc and Synthesis Gas
,”
Energy
,
23
(
10
), pp.
803
814
.10.1016/S0360-5442(98)00026-7
3.
Abuseada
,
M.
,
Ophoff
,
C.
, and
Ozalp
,
N.
,
2019
, “
Characterization of a New 10 kWe High Flux Solar Simulator Via Indirect Radiation Mapping Technique
,”
ASME J. Sol. Energy Eng.
,
141
(
2
), p. 021005.10.1115/1.4042246
4.
Abuseada
,
M.
,
Ozalp
,
N.
, and
Ophoff
,
C.
,
2019
, “
Numerical and Experimental Investigation of Heat Transfer in a Solar Receiver With a Variable Aperture
,”
Int. J. Heat Mass Transfer
,
128
, pp.
125
135
.10.1016/j.ijheatmasstransfer.2018.08.121
5.
Ophoff
,
C.
,
Ozalp
,
N.
, and
Moens
,
D.
,
2019
, “
Experimental Performance Comparison and Optical Characteristics of Aperture Mechanisms for Solar Cavity Receivers
,”
Sol. Energy
,
188
, pp.
66
82
.10.1016/j.solener.2019.05.079
6.
Petrasch
,
J.
,
2010
, “
A Free and Open Source Monte Carlo Ray Tracing Program for Concentrating Solar Energy Research
,”
ASME Paper No. ES2010-90206
.10.1115/ES2010-90206
7.
Rowe
,
S. C.
,
Clough
,
D. E.
,
Chubukov
,
B. A.
,
Groehn
,
A. J.
,
Palumbo
,
A. W.
,
Hischier
,
I.
, and
Weimer
,
A. W.
,
2015
, “
Worst-Case Losses From a Cylindrical Calorimeter for Solar Simulator Calibration
,”
Opt. Express
,
23
(
19
), pp.
A1309
A1323
.10.1364/OE.23.0A1309
8.
Erickson
,
B.
, and
Petrasch
,
J.
,
2012
, “
Inverse Identification of Intensity Distributions From Multiple Flux Maps in Concentrating Solar Applications
,”
J. Phys.: Conf. Ser.
,
369
, p.
012014
.10.1088/1742-6596/369/1/012014
9.
Suter
,
C.
,
Meouchi
,
A. T.
,
Leveque
,
G.
, and
Haussener
,
S.
,
2019
, “
Inverse Analysis of Radiative Flux Maps for the Characterization of High Flux Sources
,”
ASME J. Sol. Energy Eng.
,
141
, p. 021011.10.1115/1.4042227
10.
Modest
,
M. F.
,
2013
,
Radiative Heat Transfer
, 3rd ed.,
Academic Press
, San Diego, CA.
11.
Mahan
,
J. R.
,
2002
,
Radiation Heat Transfer: A Statistical Approach
,
Wiley
,
New York
.
12.
Howell
,
J. R.
,
1998
, “
The Monte Carlo Method in Radiative Heat Transfer
,”
ASME J. Heat Transfer
,
120
(
3
), pp.
547
560
.10.1115/1.2824310
13.
Delatorre
,
J.
,
Baud
,
G.
,
Bézian
,
J. J.
,
Blanco
,
S.
,
Caliot
,
C.
,
Cornet
,
J. F.
,
Coustet
,
C.
,
Dauchet
,
J.
,
Hafi
,
M. E.
,
Eymet
,
V.
,
Fournier
,
R.
,
Gautrais
,
J.
,
Gourmel
,
O.
,
Joseph
,
D.
,
Meilhac
,
N.
,
Pajot
,
A.
,
Paulin
,
M.
,
Perez
,
P.
,
Piaud
,
B.
,
Roger
,
M.
,
Rolland
,
J.
,
Veynandt
,
F.
, and
Weitz
,
S.
,
2014
, “
Monte Carlo Advances and Concentrated Solar Applications
,”
Sol. Energy
,
103
, pp.
653
681
.10.1016/j.solener.2013.02.035
14.
Vauhkonen
,
M.
,
Tarvainen
,
T.
, and
Lähivaara
,
T.
,
2016
, “
Inverse Problems
,”
Mathematical Modelling
,
Springer
,
Cham, Switzerland
, pp.
207
227
.
15.
Aster
,
R. C.
,
Borchers
,
B.
, and
Thurber
,
C. H.
,
2018
,
Parameter Estimation and Inverse Problems
, 3rd ed.,
Elsevier
,
San Diego, CA
.
16.
Howell
,
J. R.
, and
Daun
,
K.
,
2004
, “
Inverse Design in Thermal Radiation Problems
,”
Inverse Problems, Design and Optimization Symposium
,
Rio de Janeiro, Brazil
, Mar. 17–19, pp.
1
12
.https://www.researchgate.net/publication/237227524_INVERSE_DESIGN_IN_THERMAL_RADIATION_PROBLEMS
17.
Jaluria
,
Y.
,
2019
, “
Solution of Inverse Problems in Thermal Systems
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
1
), p.
011005
.10.1115/1.4042353
18.
Colaço
,
M. J.
, and
Dulikravich
,
G. S.
,
2006
, “
Inverse and Optimization Problems in Heat Transfer
,”
J. Braz. Soc. Mech. Sci. Eng.
,
28
(
1
), pp.
1
24
.10.1590/S1678-58782006000100001
19.
Howell
,
J. R.
,
Siegel
,
R.
, and
Mengüç
,
M. P.
,
2010
,
Thermal Radiation Heat Transfer
, 5th ed.,
CRC Press
,
Boca Raton, FL
.
20.
Krueger
,
K. R.
,
2012
,
Design and Characterization of a Concentrating Solar Simulator
,
University of Minnesota
,
Minneapolis, MN
.
21.
von Zedtwitz
,
P.
,
2005
,
Hydrogen Production by Solar Thermal Steam Gasification of Coal
,
ETH Zurich
,
Zurich, Switzerland
.
22.
Dong
,
X.
,
Nathan
,
G. J.
,
Sun
,
Z.
,
Gu
,
D.
, and
Ashman
,
P. J.
,
2015
, “
Concentric Multilayer Model of the Arc in High Intensity Discharge Lamps for Solar Simulators With Experimental Validation
,”
Sol. Energy
,
122
, pp.
279
287
.10.1016/j.solener.2015.09.004
23.
Slawski
,
M.
, and
Hein
,
M.
,
2013
, “
Non-Negative Least Squares for High-Dimensional Linear Models: Consistency and Sparse Recovery Without Regularization
,”
Electron. J. Stat.
,
7
(
0
), pp.
3004
3056
.10.1214/13-EJS868
24.
Lawson
,
C. L.
, and
Hanson
,
R. J.
,
1987
, “
Linear Least Squares With Linear Inequality Constraints
,”
Solving Least Squares Problems
,
Society for Industrial and Applied Mathematics
, Englewood Cliffs, NJ, pp.
158
173
.
25.
Coleman
,
T. F.
, and
Li
,
Y.
,
1996
, “
A Reflective Newton Method for Minimizing a Quadratic Function Subject to Bounds on Some of the Variables
,”
SIAM J. Optim.
,
6
(
4
), pp.
1040
1058
.10.1137/S1052623494240456
26.
MathWorks
,
2019
, “
Optimization Toolbox: User's Guide
,” accessed Mar. 25, 2019, https://www.mathworks.com/help/pdf_doc/optim/optim_tb.pdf
27.
Sarwar
,
J.
,
Georgakis
,
G.
,
LaChance
,
R.
, and
Ozalp
,
N.
,
2014
, “
Description and Characterization of an Adjustable Flux Solar Simulator for Solar Thermal, Thermochemical and Photovoltaic Applications
,”
Sol. Energy
,
100
, pp.
179
194
.10.1016/j.solener.2013.12.008
28.
Gill
,
R.
,
Bush
,
E.
,
Haueter
,
P.
, and
Loutzenhiser
,
P.
,
2015
, “
Characterization of a 6 kW High-Flux Solar Simulator With an Array of Xenon Arc Lamps Capable of Concentrations of Nearly 5000 Suns
,”
Rev. Sci. Instrum.
,
86
(
12
), p.
125107
.10.1063/1.4936976
You do not currently have access to this content.