The research on water-heat transport of soil porous media has important theoretical and practical significance for the problem of agricultural production and environmental governance. In this work, the water-heat transport characteristics of sandy soil porous media are analyzed. The two-dimensional continuum physical model is constructed by continuum method, and the two-dimensional pore network physical model is constructed directly at pore scale by taking into account the complicated pore and skeleton structures of soil. Mathematical models of water-heat transport process of sandy soil are constructed based on heat-mass transfer mechanism. Mathematical models of the continuum method and pore network method are solved by ANSYS and self-designed solving algorithm, respectively. The numerical simulation results of soil temperature distributions and moisture distributions are in good agreement with the experimental results. The pore network simulation results are in good agreement with the measured data and are superior to the existing continuous scale method. The pore network simulation results can directly present the characteristics of the preferential flow and wetting front during the water-heat transport process of soil.

References

1.
Jarvis
,
N. J.
,
2007
, “
A Review of Non-Equilibrium Water Flow and Solute Transport in Soil Macropores: Principles, Controlling Factors and Consequences for Water Quality
,”
Eur. J. Soil Sci.
,
58
(
3
), pp.
523
546
.
2.
Wu
,
S. H.
,
Jansson
,
P. E.
, and
Zhang
,
X. Y.
,
2011
, “
Modelling Temperature, Moisture and Surface Heat Balance in Bare Soil Under Seasonal Frost Conditions in china
,”
Eur. J. Soil Sci.
,
62
(
6
), pp.
780
796
.
3.
Schelle
,
H.
,
Heise
,
L.
,
Jänicke
,
K.
, and
Durner
,
W.
,
2013
, “
Water Retention Characteristics of Soils Over the Whole Moisture Range: A Comparison of Laboratory Methods
,”
Eur. J. Soil Sci.
,
64
(
6
), pp.
814
821
.
4.
Zhang
,
M.
,
Wen
,
Z.
,
Xue
,
K.
,
Chen
,
L.
, and
Li
,
D.
,
2016
, “
A Coupled Model for Liquid Water, Water Vapor and Heat Transport of Saturated-Unsaturated Soil in Cold Regions: Model Formulation and Verification
,”
Environ. Earth Sci.
,
75
(
80
), pp.
701
709
.
5.
Liu
,
H.
,
Janssen
,
M.
, and
Lennartz
,
B.
,
2016
, “
Changes in Flow and Transport Patterns in Fen Peat Following Soil Degradation
,”
Eur. J. Soil Sci.
,
67
(
6
), pp.
763
772
.
6.
Kebre
,
M. B.
,
Cherblanc
,
F.
,
Ouedraogo
,
F.
,
Jamin
,
F.
,
Naon
,
B.
,
Zougmore
,
F.
, and
Benet
,
J.-C.
,
2017
, “
Water Flow in Soil at Small Water Contents: A Simple Approach to Estimate the Relative Hydraulic Conductivity in Sandy Soil
,”
Eur. J. Soil Sci.
,
68
(
2
), pp.
167
176
.
7.
Duginov
,
L. A.
,
Kutvitskaya
,
N. B.
,
Magomedgadzhieva
,
M. A.
,
Melˈnikova
,
E. A.
, and
Rozovskii
,
M. K.
,
2014
, “
Comprehensive Solution of Heat Conduction Problem Using Mathematical Model of Heat and Mass Transfer in Permafrost Soils
,”
Soil Mech. Found Eng.
,
50
(
6
), pp.
262
266
.
8.
Zhang
,
J.
,
Chen
,
Q.
, and
You
,
C.
,
2015
, “
Numerical Simulation of Mass and Heat Transfer Between Biochar and Sandy Soil
,”
Int. J. Heat Mass Transfer
,
91
, pp.
119
126
.
9.
Fetzer
,
T.
,
Vanderborght
,
J.
,
Mosthaf
,
K.
,
Smits
,
K. M.
, and
Helmig
,
R.
,
2017
, “
Heat and Water Transport in Soils and Across the Soil-Atmosphere Interface—2: Numerical Analysis
,”
Water Resour. Res.
,
53
(
2
), pp.
1080
1100
.
10.
Aminzadeh
,
M.
,
Breitenstein
,
D.
, and
Or
,
D.
,
2017
, “
Characteristics of Turbulent Airflow Deduced From Rapid Surface Thermal Fluctuations: An Infrared Surface Anemometer
,”
Bound-Lay Meteorol.
,
165
(
6
), pp.
1
16
.
11.
Aminzadeh
,
M.
, and
Or
,
D.
,
2014
, “
Energy Partitioning Dynamics of Drying Terrestrial Surfaces
,”
J. Hydrol.
,
519
, pp.
1257
1270
.
12.
Haghighi
,
E.
, and
Or
,
D.
,
2015
, “
Linking Evaporative Fluxes From Bare Soil Across Surface Viscous Sublayer With the Monin-Obukhov Atmospheric Flux-Profile Estimates
,”
J. Hydrol.
,
525
, pp.
684
693
.
13.
Massman
,
W. J.
,
2015
, “
A Non-Equilibrium Model for Soil Heating and Moisture Transport During Extreme Surface Heating
,”
Geosci. Model Dev. Discuss
,
8
(
3
), pp.
2555
2603
.
14.
Yiotis
,
A. G.
,
Tsimpanogiannis
,
I. N.
, and
Stubos
,
A. K.
,
2010
, “
Fractal Characteristics and Scaling of the Drying Front in Porous Media: A Pore Network Study
,”
Dry Technol.
,
28
(
8
), pp.
981
990
.
15.
Sun
,
Y.
,
Kharaghani
,
A.
, and
Tsotsas
,
E.
,
2016
, “
Micro-Model Experiments and Pore Network Simulations of Liquid Imbibition in Porous Media
,”
Chem. Eng. Sci.
,
150
, pp.
41
53
.
16.
Benard
,
P.
,
Kroener
,
E.
,
Vontobel
,
P.
,
Kaestner
,
A.
, and
Carminati
,
A.
,
2016
, “
Water Percolation Through the Root-Soil Interface
,”
Adv. Water Resour.
,
95
, pp.
190
198
.
17.
Xie
,
C.
,
Raeini
,
A. Q.
,
Wang
,
Y.
,
Blunt
,
M. J.
, and
Wang
,
M.
,
2017
, “
An Improved Pore-Network Model Including Viscous Coupling Effects Using Direct Simulation by the Lattice Boltzmann Method
,”
Adv. Water Resour.
,
100
, pp.
26
34
.
18.
Xiong
,
Q.
,
Baychev
,
T. G.
, and
Jivkov
,
A. P.
,
2016
, “
Review of Pore Network Modelling of Porous Media: Experimental Characterisations, Network Constructions and Applications to Reactive Transport
,”
J. Contamin. Hydrol.
,
192
, pp.
101
117
.
19.
Yuan
,
Y.
,
Tan
,
L.
,
Zhao
,
Z.
,
Xu
,
Y.
,
Zhao
,
Y.
, and
Yuan
,
Y.
,
2016
, “
Multiscale and Multilayer Structural Modeling and Simulation on Drying of Grain Packing Porous Media
,”
Dry Technol.
,
34
(
14
), pp.
1664
1676
.
20.
Vries
,
E. T. D.
,
Raoof
,
A.
, and
Genuchten
,
M. T. V.
,
2017
, “
Multiscale Modelling of Dual-Porosity Porous Media; a Computational Pore-Scale Study for Flow and Solute Transport
,”
Adv. Water Resour.
,
105
, pp.
82
95
.
21.
Shaeri
,
M. R.
,
Beyhaghi
,
S.
, and
Pillai
,
K. M.
,
2013
, “
On Applying an External-Flow Driven Mass Transfer Boundary Condition to Simulate Drying From a Pore-Network Model
,”
Int. J. Heat Mass Transfer
,
57
(
1
), pp.
331
344
.
22.
Zhang
,
Z. B.
,
Peng
,
X.
,
Zhou
,
H.
,
Lin
,
H.
, and
Sun
,
H.
,
2015
, “
Characterizing Preferential Flow in Cracked Paddy Soils Using Computed Tomography and Breakthrough Curve
,”
Soil Tillage Res.
,
146
, pp.
53
65
.
23.
Flury
,
M.
,
Leuenberger
,
J.
,
Studer
,
B.
, and
Flühler
,
H.
,
1995
, “
Transport of Anions and Herbicides in a Loamy and a Sandy Field Soil
,”
Water Resour. Res.
,
31
(
4
), pp.
823
835
.
24.
Liu
,
W.
,
Zhao
,
X. X.
, and
Mizukami
,
K.
,
1998
, “
2D Numerical Simulation for Simultaneous Heat, Water and Gas Migration in Soil Bed Under Different Environmental Conditions
,”
Heat Mass Transfer
,
34
(
4
), pp.
307
316
.
25.
Hu
,
X. J.
,
Du
,
J.
, and
Wang
,
B. X.
,
2003
, “
Gas Seepage Rarefied Effect and Darcean Permeability in Microminiature of Porous Structures
,”
J. Therm. Sci. Technol.
,
2
, pp.
154
156
.
You do not currently have access to this content.