We present droplet growth dynamics on homogeneous and patterned surfaces (surface with hydrophilic and hydrophobic region) using two-dimensional thermal lattice Boltzmann method (LBM). In the first part, we performed 2D simulations on homogeneous hydrophobic surfaces. The result shows that the droplet grows at higher rate on a surface with higher wettability which is attributed to low conduction resistance and high solid–liquid contact area. In the later part, we performed simulations on patterned surface and observed that droplet preferentially nucleates on the hydrophilic region due to lower energy barrier and grows in constant contact line (CCL) mode because of contact line pinning at the interface of hydrophilic–hydrophobic region. As the contact angle reaches the maximum value of hydrophobic surface, contact line depins and droplet shows constant contact angle (CCA) growth mode. We also discuss the effect of characteristic width of hydrophilic region on growth of droplet. We show that contact angle of the droplet increases rapidly and reaches the contact angle of hydrophobic region on a surface with a lower width of the hydrophilic surface.

References

1.
Beér
,
J. M.
,
2007
, “
High Efficiency Electric Power Generation: The Environmental Role
,”
Prog. Energy Combust. Sci.
,
33
(
2
), pp.
107
134
.
2.
Lee
,
A.
,
Moon
,
M.-W.
,
Lim
,
H.
,
Kim
,
W.-D.
, and
Kim
,
H.-Y.
,
2012
, “
Water Harvest Via Dewing
,”
Langmuir
,
28
(
27
), pp.
10183
10191
.
3.
Khawaji
,
A. D.
,
Kutubkhanah
,
I. K.
, and
Wie
,
J.-M.
,
2008
, “
Advances in Seawater Desalination Technologies
,”
Desalination
,
221
(
1–3
), pp.
47
69
.
4.
Kim
,
M.
, and
Corradini
,
M.
,
1990
, “
Modeling of Condensation Heat Transfer in a Reactor Containment
,”
Nucl. Eng. Des.
,
118
(
2
), pp.
193
212
.
5.
Singh
,
M.
,
Kondaraju
,
S.
, and
Bahga
,
S. S.
,
2017
, “
Enhancement of Thermal Performance of Micro Heat Pipes Using Wettability Gradients
,”
Int. J. Heat Mass Transfer
,
104
, pp.
400
408
.
6.
Carey
,
V. P.
,
2007
,
Liquid–Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Process in Heat Transfer Equipment
,
Taylor & Francis
, New York.
7.
Graham
,
C.
, and
Griffith
,
P.
,
1973
, “
Drop Size Distributions and Heat Transfer in Dropwise Condensation
,”
Int. J. Heat Mass Transfer
,
16
(
2
), pp.
337
346
.
8.
Leach
,
R.
,
Stevens
,
F.
,
Langford
,
S.
, and
Dickinson
,
J.
,
2006
, “
Dropwise Condensation: Experiments and Simulations of Nucleation and Growth of Water Drops in a Cooling System
,”
Langmuir
,
22
(
21
), pp.
8864
8872
.
9.
Rykaczewski
,
K.
,
2012
, “
Microdroplet Growth Mechanism During Water Condensation on Superhydrophobic Surfaces
,”
Langmuir
,
28
(
20
), pp.
7720
7729
.
10.
Varanasi
,
K. K.
,
Hsu
,
M.
,
Bhate
,
N.
,
Yang
,
W.
, and
Deng
,
T.
,
2009
, “
Spatial Control in the Heterogeneous Nucleation of Water
,”
Appl. Phys. Lett.
,
95
(
9
), p.
094101
.
11.
Hou
,
Y.
,
Yu
,
M.
,
Chen
,
X.
,
Wang
,
Z.
, and
Yao
,
S.
,
2015
, “
Recurrent Filmwise and Dropwise Condensation on a Beetle Mimetic Surface
,”
ACS Nano
,
9
(
1
), pp.
71
81
.
12.
Da Riva
,
E.
, and
Del Col
,
D.
,
2012
, “
Numerical Simulation of Laminar Liquid Film Condensation in a Horizontal Circular Minichannel
,”
ASME J. Heat Transfer
,
134
(
5
), p.
051019
.
13.
Ganapathy
,
H.
,
Shooshtari
,
A.
,
Choo
,
K.
,
Dessiatoun
,
S.
,
Alshehhi
,
M.
, and
Ohadi
,
M.
,
2013
, “
Volume of Fluid-Based Numerical Modeling of Condensation Heat Transfer and Fluid Flow Characteristics in Microchannels
,”
Int. J. Heat Mass Transfer
,
65
, pp.
62
72
.
14.
Chen
,
S.
,
Yang
,
Z.
,
Duan
,
Y.
,
Chen
,
Y.
, and
Wu
,
D.
,
2014
, “
Simulation of Condensation Flow in a Rectangular Microchannel
,”
Chem. Eng. Process.: Process Intensif.
,
76
, pp.
60
69
.
15.
Son
,
G.
,
2010
, “
A Level-Set Method for Analysis of Microdroplet Evaporation on a Heated Surface
,”
J. Mech. Sci. Technol.
,
24
(
4
), pp.
991
997
.
16.
Budaraju
,
A.
,
Phirani
,
J.
,
Kondaraju
,
S.
, and
Bahga
,
S. S.
,
2016
, “
Capillary Displacement of Viscous Liquids in Geometries With Axial Variations
,”
Langmuir
,
32
(
41
), pp.
10513
10521
.
17.
Yagub
,
A.
,
Farhat
,
H.
,
Kondaraju
,
S.
, and
Singh
,
T.
,
2015
, “
A Lattice Boltzmann Model for Substrates With Regularly Structured Surface Roughness
,”
J. Comput. Phys.
,
301
, pp.
402
414
.
18.
Farhat
,
H.
,
Kondaraju
,
S.
,
Na
,
S.-K.
, and
Lee
,
J. S.
,
2013
, “
Effect of Hydrodynamic and Fluid-Solid Interaction Forces on the Shape and Stability of a Droplet Sedimenting on a Horizontal Wall
,”
Phys. Rev. E
,
88
, p.
013013
.
19.
Li
,
Q.
,
Luo
,
K.
,
Kang
,
Q.
,
He
,
Y.
,
Chen
,
Q.
, and
Liu
,
Q.
,
2016
, “
Lattice Boltzmann Methods for Multiphase Flow and Phase-Change Heat Transfer
,”
Prog. Energy Combust. Sci.
,
52
, pp.
62
105
.
20.
Shan
,
X.
, and
Chen
,
H.
,
1993
, “
Lattice Boltzmann Model for Simulating Flows With Multiple Phases and Components
,”
Phys. Rev. E
,
47
(
3
), pp.
1815
1819
.
21.
Shan
,
X.
, and
Chen
,
H.
,
1994
, “
Simulation of Nonideal Gases and Liquid-Gas Phase Transitions by the Lattice Boltzmann Equation
,”
Phys. Rev. E
,
49
(
4
), pp.
2941
2948
.
22.
Yuan
,
P.
, and
Schaefer
,
L.
,
2006
, “
Equations of State in a Lattice Boltzmann Model
,”
Phys. Fluids (1994-Present)
,
18
(
4
), p.
042101
.
23.
Gong
,
S.
, and
Cheng
,
P.
,
2012
, “
A Lattice Boltzmann Method for Simulation of Liquid-Vapor Phase-Change Heat Transfer
,”
Int. J. Heat Mass Transfer
,
55
(
17–18
), pp.
4923
4927
.
24.
Liu
,
X.
, and
Cheng
,
P.
,
2013
, “
Lattice Boltzmann Simulation of Steady Laminar Film Condensation on a Vertical Hydrophilic Subcooled Flat Plate
,”
Int. J. Heat Mass Transfer
,
62
, pp.
507
514
.
25.
Liu
,
X.
, and
Cheng
,
P.
,
2013
, “
Lattice Boltzmann Simulation for Dropwise Condensation of Vapor Along Vertical Hydrophobic Flat Plates
,”
Int. J. Heat Mass Transfer
,
64
, pp.
1041
1052
.
26.
Ashrafi
,
A.
, and
Moosavi
,
A.
,
2016
, “
Droplet Condensation on Chemically Homogeneous and Heterogeneous Surfaces
,”
J. Appl. Phys.
,
120
(
12
), p.
124901
.
27.
Li
,
Q.
,
Kang
,
Q.
,
Francois
,
M.
,
He
,
Y.
, and
Luo
,
K.
,
2015
, “
Lattice Boltzmann Modeling of Boiling Heat Transfer: The Boiling Curve and the Effects of Wettability
,”
Int. J. Heat Mass Transfer
,
85
, pp.
787
796
.
28.
Bhatnagar
,
P. L.
,
Gross
,
E. P.
, and
Krook
,
M.
,
1954
, “
A Model for Collision Processes in Gases. I. small Amplitude Processes in Charged and Neutral One-Component Systems
,”
Phys. Rev.
,
94
(
3
), pp.
511
525
.
29.
Qian
,
Y. H.
,
D'Humières
,
D.
, and
Lallemand
,
P.
,
1992
, “
Lattice BGK Models for Navier–Stokes Equation
,”
EPL (Europhys. Lett.)
,
17
(
6
), p.
479
.
30.
Kupershtokh
,
A.
,
Medvedev
,
D.
, and
Karpov
,
D.
,
2009
, “
On Equations of State in a Lattice Boltzmann Method
,”
Comput. Math. Appl.
,
58
(
5
), pp.
965
974
.
31.
Jain
,
P. K.
,
Tentner
,
A.
, and
Uddin
,
R.
,
2009
, “
A Lattice Boltzmann Framework to Simulate Boiling Water Reactor Core Hydrodynamics
,”
Comput. Math. Appl.
,
58
(
5
), pp.
975
986
.
32.
Sukope
,
M. C.
, and
Thorne
,
D. T.
,
2006
,
Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers
,
Springer-Verlag
,
Berlin
.
33.
Angelopoulos
,
A. D.
,
Paunov
,
V. N.
,
Burganos
,
V. N.
, and
Payatakes
,
A. C.
,
1998
, “
Lattice Boltzmann Simulation of Nonideal Vapor-Liquid Flow in Porous Media
,”
Phys. Rev. E
,
57
(
3
), pp.
3237
3245
.
34.
Briant
,
A. J.
,
Wagner
,
A. J.
, and
Yeomans
,
J. M.
,
2004
, “
Lattice Boltzmann Simulations of Contact Line Motion—I: Liquid-Gas Systems
,”
Phys. Rev. E
,
69
(
3 Pt. 1
), p.
031602
.
35.
Mohamad
,
A. A.
,
2011
,
Lattice Boltzmann Method: Fundamentals and Engineering Applications With Computer Codes
,
Springer-Verlag
,
London
.
36.
Narhe
,
R. D.
, and
Beysens
,
D. A.
,
2004
, “
Nucleation and Growth on a Superhydrophobic Grooved Surface
,”
Phys. Rev. Lett.
,
93
(
7
), p.
076103
.
37.
Narhe
,
R. D.
, and
Beysens
,
D. A.
,
2007
, “
Growth Dynamics of Water Drops on a Square-Pattern Rough Hydrophobic Surface
,”
Langmuir
,
23
(
12
), pp.
6486
6489
.
38.
Beysens
,
D.
,
2006
, “
Dew Nucleation and Growth
,”
C. R. Phys.
,
7
(
9–10
), pp.
1082
1100
.
39.
Kelton
,
K.
, and
Greer
,
A.
,
2010
,
Nucleation in Condensed Matter: Applications in Materials and Biology
,
Elsevier
, Oxford, UK.
40.
Xu
,
W.
,
Lan
,
Z.
,
Peng
,
B. L.
,
Wen
,
R. F.
, and
Ma
,
X. H.
,
2015
, “
Effect of Surface Free Energies on the Heterogeneous Nucleation of Water Droplet: A Molecular Dynamics Simulation Approach
,”
J. Chem. Phys.
,
142
(
5
), p.
054701
.
You do not currently have access to this content.