An analytical and numerical study was conducted for estimation of the effective thermal conductivities of curved metal frame core structures, which can replace metal foams, in views of their advantages over the metal foams for both load bearing and heat dissipation. The trajectory of the frame ligament and its cross-sectional area were allowed to vary arbitrarily in the three-dimensional (3D) space. The analytical formula obtained by extending the formula previously proposed by Bai et al. (2017, “A General Expression for the Stagnant Thermal Conductivity of Stochastic and Periodic Structures,” ASME J. Heat Transfer, 140(5), p. 052001) was examined by comparing it with the numerical results directly obtained from full 3D numerical computations. An air layer partially filled with a collection of coiled circular rods was treated both analytically and numerically. Furthermore, the effect of lattice nodes on the effective thermal conductivity was investigated by introducing an analytical model with the lattice ligaments merging together at one nodal point. The analytical expressions thus derived for the lattice structures with nodes were applied to tetrahedral structure and octet-truss structure to find their effective thermal conductivities, which are found to agree closely with the 3D numerical results. Thus, the present analytical expressions can be used to customize the structure to meet its desired thermal performance.

References

1.
Dukhan
,
N.
,
2013
,
Metal Foams: Fundamentals and Applications
,
DEStech Publications
, Lancaster, PA.
2.
Han
,
X. H.
,
Wang
,
Q.
,
Park
,
Y. G.
,
Tjoen
,
C.
,
Sommers
,
A.
, and
Jacobi
,
A.
,
2012
, “
A Review of Metal Foam and Metal Matrix Composites for Heat Exchangers and Heat Sinks
,”
Heat Transfer Eng.
,
33
(
12
), pp.
991
1009
.
3.
Lu
,
T. J.
,
Stone
,
H. A.
, and
Ashby
,
M. F.
,
1998
, “
Heat Transfer in Open-Cell Metal Foams
,”
Acta Mater.
,
46
, pp.
3619
3635
.
4.
Lemlich
,
R.
,
1987
, “
A Theory for the Limiting Conductivity of Polyhedral Foam at Low Density
,”
J. Colloid Interface Sci.
,
64
(1), pp.
107
110
.
5.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2006
, “
Direct Simulation of Transport in Open-Cell Metal Foam
,”
ASME J. Heat Transfer
,
128
(8), pp.
793
799
.
6.
Yang
,
C.
, and
Nakayama
,
A.
,
2010
, “
A Synthesis of Tortuosity and Dispersion in Effective Thermal Conductivity of Porous Media
,”
Int. J. Heat Mass Transfer
,
53
, pp.
3222
3230
.
7.
Bai
,
X.
,
Hasan
,
C.
,
Mobedi
,
M.
, and
Nakayama
,
A.
,
2017
, “
A General Expression for the Stagnant Thermal Conductivity of Stochastic and Periodic Structures
,”
ASME J. Heat Transfer
,
140
(5), p. 052001.
8.
Joo
,
J. H.
,
Kang
,
K. J.
,
Kim
,
T.
, and
Lu
,
T. J.
,
2011
, “
Forced Convective Heat Transfer in All Metallic Wire-Woven Bulk Kagome Sandwich Panels
,”
Int. J. Heat Mass Transfer
,
54
, pp.
5658
5662
.
9.
Wadley
,
H. N. G.
,
2006
, “
Multifunctional Periodic Cellular Metals
,”
Phil. Trans. R. Soc. A
,
364
(
1838
), pp.
31
68
.
10.
Evans
,
A. G.
,
Hutchinson
,
J. W.
,
Fleck
,
M. F.
,
Ashby
,
M. F.
, and
Wadley
,
H. N. G.
,
2001
, “
The Topological Design of Multifunctional Cellular Metals
,”
Mater. Sci.
,
46
(3–4), pp.
309
327
.
11.
Krishnan
,
S. G.
,
Bolda
,
K. K.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2014
, “
Numerical Investigation of Fluid Flow and Heat Transfer in Periodic Porous Lattice-Frame Materials
,”
15th International Heat Transfer Conference
, Kyoto, Japan, Aug. 10--15, pp. 6651–6665.
12.
Kim
,
T.
,
Zhao
,
C. Y.
,
Lu
,
T. J.
, and
Hodson
,
H. P.
,
2004
, “
Convective Heat Dissipation With Lattice-Frame Materials
,”
Mech. Mater.
,
36
(
8
), pp.
767
780
.
13.
Kim
,
T.
,
Hodson
,
H. P.
, and
Lu
,
T. J.
,
2004
, “
Fluid-Flow and Endwall Heat-Transfer Characteristics of an Ultralight Lattice-Frame Material
,”
Int. J. Heat Mass Transfer
,
47
(
6–7
), pp.
1129
1140
.
14.
Tian
,
J.
,
Kim
,
T.
,
Lu
,
T. J.
,
Hodson
,
H. P.
, and
Queheillalt
,
D. T.
,
2004
, “
The Effects of Topology Upon Fluid-Flow and Heat-Transfer Within Cellular Copper Structures
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
3171
3186
.
15.
Yan
,
H. B.
,
Zhang
,
Q. C.
,
Lu
,
T. J.
, and
Kim
,
T.
,
2015
, “
A Lightweight X-Type Metallic Lattice in Single-Phase Forced Convection
,”
Int. J. Heat Mass Transfer
,
83
, pp.
273
283
.
16.
Haydn
,
N.
,
Wadley
,
G.
, and
Queheillalt
,
D. T.
,
2007
, “
Thermal Applications of Cellular Lattice Structures
,”
Mater. Sci. Forum
,
539–543
, pp.
242
247
.
17.
Lu
,
T. J.
,
Xu
,
F.
, and
Wen
,
T.
,
2013
,
Thermo-Fluid Behavior of Periodic Cellular Metals
,
Springer Press
,
Beijing, China
.
18.
Mobedi
,
M.
,
2018
, Private Communication.
19.
Bai
,
X.
,
2018
, “
A Theoretical and Experimental Study of Ion Transport in Electrodialysis
,” Ph.D. thesis, Shizuoka University, Shizuoka, Japan.
20.
Bai
,
X.
, and
Nakayama
,
A.
,
2018
, “
A Numerical Investigation of Charged Ion Transport in Electrodialyzers With Spacers
,”
Desalination
,
445
, pp.
29
39
.
21.
Deshpande
,
V. S.
,
Fleck
,
N. A.
, and
Ashby
,
M. P.
,
2001
, “
Effective Properties of the Octet-Truss Lattice Material
,”
J. Mech. Phys. Solids
,
49
(
8
), pp.
1747
1752
.
22.
Dong
,
L.
,
Deshpande
,
V.
, and
Wadley
,
H.
,
2015
, “
Mechanical Response of Ti-6Al-4V Octet-Truss Lattice Structures
,”
Int. J. Solids Struct.
,
60–61
, pp.
107
124
.
You do not currently have access to this content.