This study establishes an image-based approach to determine the thermal conductivity of a metal material as a function of temperature using isotherm movement. The thermal conductivity within a range of temperature can be derived from a combined experimental and theoretical study based on Wiedemann–Franz law. A cubic relation between heating time and distance from heat source has been observed, proved, and used to determine the thermal conductivity at different temperature. The temporal and spatial information provided by infrared imaging allow continuous temperature dependence of thermal conductivity to be derived with high accuracy. This method has the potential to determine thermal conductivities of multiple samples at high throughput, and to derive thermal conductivity along different crystal orientation in a thermally anisotropic system.

References

1.
DiSalvo
,
F. J.
,
1999
, “
Thermoelectric Cooling and Power Generation
,”
Science
,
285
(
5428
), pp.
703
706
.
2.
Xiao
,
M.
,
Feng
,
B.
, and
Gong
,
K.
,
2002
, “
Preparation and Performance of Shape Stabilized Phase Change Thermal Storage Materials With High Thermal Conductivity
,”
Energy Convers. Manage.
,
43
(
1
), pp.
103
108
.
3.
Sarı
,
A.
, and
Karaipekli
,
A.
,
2007
, “
Thermal Conductivity and Latent Heat Thermal Energy Storage Characteristics of Paraffin/Expanded Graphite Composite as Phase Change Material
,”
Appl. Therm. Eng.
,
27
(
8
), pp.
1271
1277
.
4.
Fan
,
L.
, and
Khodadadi
,
J. M.
,
2011
, “
Thermal Conductivity Enhancement of Phase Change Materials for Thermal Energy Storage: A Review
,”
Renewable Sustainable Energy Rev.
,
15
(
1
), pp.
24
46
.
5.
Balandin
,
A. A.
,
Ghosh
,
S.
,
Bao
,
W.
,
Calizo
,
I.
,
Teweldebrhan
,
D.
,
Miao
,
F.
, and
Lau
,
C. N.
,
2008
, “
Superior Thermal Conductivity of Single-Layer Graphene
,”
Nano Lett.
,
8
(
3
), pp.
902
907
.
6.
Yu
,
R.
,
Salamon
,
M.
,
Lu
,
J. P.
, and
Lee
,
W.
,
1992
, “
Thermal Conductivity of an Untwinned YBa2Cu3O7−δ Single Crystal and a New Interpretation of the Superconducting State Thermal Transport
,”
Phys. Rev. Lett.
,
69
(
9
), p.
1431
.
7.
Zeller
,
R.
, and
Pohl
,
R.
,
1971
, “
Thermal Conductivity and Specific Heat of Noncrystalline Solids
,”
Phys. Rev. B
,
4
(
6
), p.
2029
.
8.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
,
2003
, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
J. Heat Transfer.
,
125
(
4
), pp.
567
574
.
9.
Berber
,
S.
,
Kwon
,
Y.-K.
, and
Tománek
,
D.
,
2000
, “
Unusually High Thermal Conductivity of Carbon Nanotubes
,”
Phys. Rev. Lett.
,
84
(
20
), pp.
4613
4616
.
10.
Osman
,
M. A.
, and
Srivastava
,
D.
,
2001
, “
Temperature Dependence of the Thermal Conductivity of Single-Wall Carbon Nanotubes
,”
Nanotechnol.
,
12
(
1
), p.
21
.
11.
Calmidi
,
V.
, and
Mahajan
,
R.
,
1999
, “
The Effective Thermal Conductivity of High Porosity Fibrous Metal Foams
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
466
471
.
12.
Zhao
,
C.
,
2012
, “
Review on Thermal Transport in High Porosity Cellular Metal Foams With Open Cells
,”
Int. J. Heat Mass Transfer
,
55
(
13
), pp.
3618
3632
.
13.
Solórzano
,
E.
,
Reglero
,
J.
,
Rodríguez-Pérez
,
M.
,
Lehmhus
,
D.
,
Wichmann
,
M. D.
, and
Saja
,
J.
,
2008
, “
An Experimental Study on the Thermal Conductivity of Aluminium Foams by Using the Transient Plane Source Method
,”
Int. J. Heat Mass Transfer
,
51
(
25
), pp.
6259
6267
.
14.
Ohtori
,
N.
,
Oono
,
T.
, and
Takase
,
K.
,
2009
, “
Thermal Conductivity of Molten Alkali Halides: Temperature and Density Dependence
,”
J. Chem. Phys.
,
130
(
4
), p.
044505
.
15.
Chester
,
G.
, and
Thellung
,
A.
,
1961
, “
The Law of Wiedemann and Franz
,”
J. Phys.
,
77
(
5
), p.
1005
.
16.
Beck
,
A.
,
1957
, “
A Steady State Method for the Rapid Measurement of the Thermal Conductivity of Rocks
,”
J. Sci. Instrum.
,
34
(
5
), p.
186
.
17.
Hiroshi
,
H.
, and
Minoru
,
T.
,
1986
, “
Equivalent Inclusion Method for Steady State Heat Conduction in Composites
,”
Int. J. Eng. Sci.
,
24
(
7
), pp.
1159
1172
.
18.
Dettmer
,
E. S.
,
Romenesko
,
B. M.
,
Charles
,
H. K.
,
Carkhuff
,
B. G.
, and
Merrill
,
D. J.
,
1989
, “
Steady-State Thermal Conductivity Measurements of AlN and SiC Substrate Materials
,”
IEEE Trans. Compon., Hybrids. Manuf. Technol.
,
12
(
4
), pp.
543
547
.
19.
Fujii
,
M.
,
Zhang
,
X.
,
Xie
,
H.
,
Ago
,
H.
,
Takahashi
,
K.
,
Ikuta
,
T.
,
Abe
,
H.
, and
Shimizu
,
T.
,
2005
, “
Measuring the Thermal Conductivity of a Single Carbon Nanotube
,”
Phys. Rev. Lett.
,
95
(
6
), p.
065502
.
20.
Yu
,
R.
,
Tea
,
N.
,
Salamon
,
M.
,
Lorents
,
D.
, and
Malhotra
,
R.
,
1992
, “
Thermal Conductivity of Single Crystal C 60
,”
Phys. Rev. Lett.
,
68
(
13
), p.
2050
.
21.
Gustafsson
,
S. E.
,
1991
, “
Transient Plane Source Techniques for Thermal Conductivity and Thermal Diffusivity Measurements of Solid Materials
,”
Rev. Sci. Instrum.
,
62
(
3
), pp.
797
804
.
22.
Baba
,
T.
, and
Ono
,
A.
,
2001
, “
Improvement of the Laser Flash Method to Reduce Uncertainty in Thermal Diffusivity Measurements
,”
Meas. Sci. Technol.
,
12
(
12
), p.
2046
.
23.
Cahill
,
D. G.
,
1990
, “
Thermal Conductivity Measurement From 30 to 750 K: The 3ω Method
,”
Rev. Sci. Instrum.
,
61
(
2
), pp.
802
808
.
24.
Mandadapu
,
K. K.
,
Jones
,
R. E.
, and
Papadopoulos
,
P.
,
2009
, “
A Homogeneous Nonequilibrium Molecular Dynamics Method for Calculating Thermal Conductivity With a Three-Body Potential
,”
J. Chem. Phys.
,
130
(
20
), p.
204106
.
25.
Presley
,
M. A.
, and
Christensen
,
P. R.
,
1997
, “
Thermal Conductivity Measurements of Particulate Materials 1. A Review
,”
J. Geophys. Res.
,
102
(
E3
), pp.
6535
6549
.
26.
Lu
,
L.
,
Yi
,
W.
, and
Zhang
,
D.
,
2001
, “
3ω Method for Specific Heat and Thermal Conductivity Measurements
,”
Rev. Sci. Instrum.
,
72
(
7
), pp.
2996
3003
.
27.
Gustavsson
,
M.
,
Karawacki
,
E.
, and
Gustafsson
,
S. E.
,
1994
, “
Thermal Conductivity, Thermal Diffusivity, and Specific Heat of Thin Samples From Transient Measurements With Hot Disk Sensors
,”
Rev. Sci. Instrum.
,
65
(
12
), pp.
3856
3859
.
28.
Kim
,
S. Y.
,
Koo
,
J.-M.
, and
Kuznetsov
,
A. V.
,
2001
, “
Effect of Anisotropy in Permeability and Effective Thermal Conductivity on Thermal Performance of an Aluminum Foam Heat Sink
,”
Numer. Heat Transfer Part A: Appl.
,
40
(
1
), pp.
21
36
.
29.
Chang
,
Y.
,
Kang
,
C.
, and
Chen
,
D. J.
,
1973
, “
The Use of Fundamental Green's Functions for the Solution of Problems of Heat Conduction in Anisotropic Media
,”
Int. J. Heat Mass Transfer
,
16
(
10
), pp.
1905
1918
.
30.
Herr
,
S. A.
,
Beck
,
J.
,
McGrath
,
J. J.
,
Sahli
,
S.
, and
Aslam
,
M.
,
1994
, “
Method of Measuring Doped-Diamond-Film Thermal Conductivity Using Infrared Thermography
,”
Proc. SPIE
,
2151
, pp.
26
35
.
31.
Miettinen
,
L.
,
Kekäläinen
,
P.
,
Merikoski
,
J.
,
Myllys
,
M.
, and
Timonen
,
J.
,
2008
, “
In-Plane Thermal Diffusivity Measurement of Thin Samples Using a Transient Fin Model and Infrared Thermography
,”
Int. J. Thermophys.
,
29
(
4
), pp.
1422
1438
.
32.
Laskar
,
J.
,
Bagavathiappan
,
S.
,
Sardar
,
M.
,
Jayakumar
,
T.
,
Philip
,
J.
, and
Raj
,
B.
,
2008
, “
Measurement of Thermal Diffusivity of Solids Using Infrared Thermography
,”
Mater. Lett.
,
62
(
17
), pp.
2740
2742
.
33.
Perkowski
,
Z.
,
2011
, “
A Thermal Diffusivity Determination Method Using Thermography: Theoretical Background and Verification
,”
Int. J. Heat Mass Transfer
,
54
(
9–10
), pp.
2126
2135
.
34.
Boué
,
C.
, and
Holé
,
S.
,
2012
, “
Infrared Thermography Protocol for Simple Measurements of Thermal Diffusivity and Conductivity
,”
Infrared Phys. Technol.
,
55
(
4
), pp.
376
379
.
35.
Rossinsky
,
E.
, and
Müller-Plathe
,
F.
,
2009
, “
Anisotropy of the Thermal Conductivity in a Crystalline Polymer: Reverse Nonequilibrium Molecular Dynamics Simulation of the δ Phase of Syndiotactic Polystyrene
,”
J. Chem. Phys.
,
130
(
13
), p.
134905
.
36.
Hou
,
S.
,
Zheng
,
W.
,
Duong
,
B.
, and
Su
,
M.
,
2016
, “
All-Optical Decoder for Rapid and Noncontact Readout of Thermal Barcodes
,”
J. Phys. Chem. C
,
120
(
38
), pp.
22110
22114
.
37.
Hou
,
S.
,
Wang
,
M.
,
Guo
,
S.
, and
Su
,
M.
,
2017
, “
Photothermally Driven Refreshable Microactuators Based on Graphene Oxide Doped Paraffin
,”
ACS Appl. Mater. Interfaces
,
9
(
31
), pp.
26476
26482
.
38.
Beaton
,
C.
, and
Hewitt
,
G.
,
1989
,
Physical Property Data for the Design Engineer
,
Hemisphere Publication
,
New York
, pp.
338
341
.
39.
Lambert
,
M.
, and
Fletcher
,
L.
,
2002
, “
Thermal Contact Conductance of Non-Flat, Rough, Metallic Coated Metals
,”
ASME J. Heat Transfer
,
124
(
3
), pp.
405
412
.
40.
Fletcher
,
L.
,
1988
, “
Recent Developments in Contact Conductance Heat Transfer
,”
ASME J. Heat Transfer
,
110
(
4b
), pp.
1059
1070
.
41.
Levenberg
,
K.
,
1944
, “
A Method for the Solution of Certain Non-Linear Problems in Least Squares
,”
Q. Appl. Math.
,
2
(
2
), pp.
164
168
.
42.
Marchenko
,
V.
,
1977
,
Sturm-Liouville Operators and Their Applications
,
KiIND
, Kharkov, Ukraine.
43.
Mears
,
D. E.
,
1971
, “
Diagnostic Criteria for Heat Transport Limitations in Fixed Bed Reactors
,”
J. Catal.
,
20
(
2
), pp.
127
131
.
44.
Kanwal
,
R.
, and
Liu
,
K.
,
1989
, “
A Taylor Expansion Approach for Solving Integral Equations
,”
Int. J. Math. Educ. Sci. Technol.
,
20
(
3
), pp.
411
414
.
45.
Powell
,
R.
,
Ho
,
C. Y.
, and
Liley
,
P. E.
,
1966
,
Thermal Conductivity of Selected Materials
,
National Standard Reference Data System
, Washington, DC.
46.
Sanders
,
D.
, and
Walton
,
D.
,
1977
, “
Effect of Magnon-Phonon Thermal Relaxation on Heat Transport by Magnons
,”
Phys. Rev. B
,
15
(
3
), p.
1489
.
47.
Jin
,
R.
,
Onose
,
Y.
,
Tokura
,
Y.
,
Mandrus
,
D.
,
Dai
,
P.
, and
Sales
,
B.
,
2003
, “
In-Plane Thermal Conductivity of Nd2CuO4: Evidence for Magnon Heat Transport
,”
Phys. Rev. Lett.
,
91
(
14
), p.
146601
.
48.
Visser
,
D.
,
Ramirez
,
A.
, and
Subramanian
,
M.
,
1997
, “
Thermal Conductivity of Manganite Perovskites: Colossal Magnetoresistance as a Lattice-Dynamics Transition
,”
Phys. Rev. Lett.
,
78
(
20
), p.
3947
.
49.
Forsberg
,
C.
, and
Domoto
,
G.
,
1972
, “
Thermal-Radiation Properties of Thin Metallic Films on Dielectrics
,”
ASME J. Heat Transfer
,
94
(
4
), pp.
467
472
.
50.
Domoto
,
G.
, and
Tien
,
C. L.
,
1970
, “
Thick Film Analysis of Radiative Transfer Between Parallel Metallic Surfaces
,”
ASME J. Heat Transfer
,
92
(
3
), pp.
399
404
.
You do not currently have access to this content.