This paper is a numerical study conducted to investigate the conjugate flow and heat transfer occurring in three-dimensional (3D) natural convection. A cubical enclosure partially filled with porous block (central cubic) and considered in local thermal equilibrium with the fluid. The physical case considered concerns the existence of a horizontal temperature difference across the enclosure, between the left and the right wall, with the other external surfaces being adiabatic. Under these conditions, flow inside the enclosure is generated by the density (temperature) difference across the enclosure and the interaction between the solid porous blocks and the fluid. The Nusselt number on the hot and cold walls is presented to illustrate the overall characteristics of heat transfer consequence of the constrained flow inside the enclosure. The study focuses on the fluid flow and heat transfer evolution versus the dimensionless thickness of the inserted porous layer (0% ≤ η ≤ 100%) and the relative thermal conductivity of the solid matrix to that of the fluid (103λ̃103). The obtained complex flow structure and the corresponding heat transfer (velocity, temperature profiles) are discussed in a steady-state situation. The numerical results are illustrated in terms of isotherms, velocity, streamlines fields, and averaged Nusselt number. Thus, the results of this work can help developing new tools and to optimize the overall heat transfer rate, which is important in many electronic energy components and other energy recovering systems.

References

1.
Beghein
,
C.
,
Haghighat
,
F.
, and
Allard
,
F.
,
1992
, “
Numerical Study of Double-Diffusive Natural Convection in a Square Cavity
,”
Int. J. Heat Mass Transfer
,
35
(
4
), pp.
833
846
.
2.
Ostrach
,
S.
,
1980
, “
Natural Convection With Combined Driving Forces
,”
PhysicoChem. Hydrodyn.
,
1
(
4
), pp.
233
247
.
3.
Viskanta
,
R.
,
Bergman
,
T. L.
, and
Incropera
,
F. P.
,
1985
, “
Double Diffusive Natural Convection
,”
Natural Convection: Fundamentals and Applications
,
S.
Kakac
,
W.
Aung
, and
R.
Viskanta
, eds.,
Hemisphere
,
Washington, DC
, pp.
1075
1099
.
4.
Nield
,
D. A.
, and
Bejan
,
A.
,
2013
,
Convection in Porous Media
, 4th ed.,
Springer-Verlag
, New York.
5.
Bennacer
,
R.
,
1993
, “Convection naturelle thermosolutale: Simulation numérique des transferts et des structures d'écoulement,”
Doctoral thesis
, Université Pierre et Marie Curie, Paris, France.
6.
Bejan
,
A.
, and
Anderson
,
R.
,
1981
, “
Heat Transfer Across a Vertical Impermeable Partition Imbedded in Porous Medium
,”
Int. J. Heat Mass Transfer
,
24
(
7
), pp.
1237
1245
.
7.
Animasaun
,
I. L.
,
2016
, “
Double Diffusive Unsteady Convective Micropolar Flow Past a Vertical Porous Plate Moving Through Binary Mixture Using Modified Boussinesq Approximation
,”
Ain Shams Eng. J.
,
7
(
2
), pp.
755
765
.
8.
Oueslati
,
F.
,
Bennacer
,
R.
,
Sammouda
,
H.
, and
Belghith
,
A.
,
2008
, “
Thermosolutal Convection During Melting in a Porous Medium Saturated With Aqueous Solution
,”
Numer. Heat Transfer, Part A
,
54
(3), pp.
315
330
.
9.
Bennacer
,
R.
,
Tobbal
,
A.
,
Beji
,
H.
, and
Vasseur
,
P.
,
2001
, “
Double Diffusive Convection in a Vertical Enclosure Filled With Anisotropic Porous Media
,”
Int. J. Therm. Sci.
,
40
(
1
), pp.
30
41
.
10.
Gobin
,
D.
,
Goyeau
,
B.
, and
Songbe
,
J.
,
1998
, “
Double Diffusive Natural Convection in Composite Fluid-Porous Layer
,”
ASME J. Heat Transfer
,
120
(
1
), pp.
234
242
.
11.
House
,
J.
,
Beckemann
,
C.
, and
Theodore
,
S.
,
1990
, “
Effect of a Centered Conducting Body on Natural Convection Heat Transfer in an Enclosure
,”
Numer. Heat Transfer Part A
,
18
, pp.
213
225
.
12.
Hadidi
,
N.
,
Ould-Amer
,
Y.
, and
Bennacer
,
R.
,
2013
, “
Bi-Layered and Inclined Porous Collector: Optimum Heat and Mass Transfer
,”
Energy
,
51
, pp.
422
430
.
13.
Ha
,
M. Y.
, and
Jung
,
M. J.
,
2000
, “
A Numerical Study on Three-Dimensional Conjugate Heat Transfer of Natural Convection and Conduction in a Differentially Heated Cubic Enclosure With a Heat-Generating Cubic Conducting Body
,”
Int. J. Heat Mass Transfer
,
43
(
23
), pp.
4229
4248
.
14.
Tong
,
W.
, and
Sharatchandra
,
M. C.
,
1990
, “
Heat Transfer Enhancement Using Porous Inserts
,”
Heat Transfer Flow Porous Media HTD
, Vol. 156, American Society of Mechanical Engineers, New York, pp.
41
46
.
15.
Baytas
,
A. C.
,
Ingham
,
D. B.
, and
Pop
,
I.
,
2009
, “
Double Diffusive Natural Convection in an Enclosure Filled With a Step Type Porous Layer: Non-Darcy Flow
,”
Int. J. Therm. Sci.
,
48
(
4
), pp.
665
673
.
16.
Kramer
,
J.
,
Ravnik
,
J.
,
Jecl
,
R.
, and
Škerget
,
L.
,
2011
, “
Simulation of 3D Flow in Porous Media by Boundary Element Method
,”
Eng. Anal. Boundary Elem.
,
35
(
12
), pp.
1256
1264
.
17.
Varol
,
Y.
,
2011
, “
Natural Convection in Porous Triangular Enclosure With a Centered Conducting Body
,”
Int. Commun. Heat Mass Transfer
,
38
(
3
), pp.
368
376
.
18.
Jun
,
Y.
,
Yuan
,
C. W.
,
Xiao
,
J. Z.
, and
Yu
,
P.
,
2015
, “
Effect of Rayleigh Numbers on Natural Convection and Heat Transfer With Thermal Radiation in a Cavity Partially Filled With Porous Medium
,”
Procedia Eng.
,
121
, pp.
1171
1178
.
19.
Beckerman
,
C.
,
Viskanta
,
S.
, and
Ramadhyani
,
S.
,
2007
, “
A Numerical Study of Non-Darcian Natural Convection in a Vertical Enclosure Filled With a Porous Medium
,”
Numer. Heat Transfer
,
10
(
6
), pp.
557
570
.
20.
Hadidi
,
N.
, and
Bennacer
,
R.
,
2015
, “
Two-Dimensional Thermosolutal Natural Convective Heat and Mass Transfer in a Bi-Layered and Inclined Porous Enclosure
,”
Energy
,
93
(
Pt. 2
), pp.
2582
2592
.
21.
Jaballah
,
S.
,
Bennacer
,
R.
, and
Sammouda
,
H.
,
2006
, “
Simulation of Mixed Convection in a Channel Partially Filled With Porous Media
,”
Prog. Comput. Fluid Dyn.
,
6
(
6
), pp.
335
341
.
22.
Hadidi
,
N.
, and
Bennacer
,
R.
,
2016
, “
Three-Dimensional Double Diffusive Natural Convection Across a Cubical Enclosure Partially Filled by Vertical Porous Layer
,”
Int. J. Therm. Sci.
,
101
, pp.
143
157
.
23.
Lima
,
T.
, and
Ganzarolli
,
M. M.
,
2016
, “
A Heat Line Approach on the Analysis of the Heat Transfer Enhancement in a Square Enclosure With an Internal Conducting Solid Body
,”
Int. J. Therm. Sci.
,
105
, pp.
45
56
.
24.
Souayeh
,
B.
,
Ben-Cheikh
,
N.
, and
Ben-Beya
,
B.
,
2017
, “
Effect of Thermal Conductivity Ratio on Flow Features and Convective Heat Transfer
,”
Part. Sci. Technol.
,
35
(5), pp. 565–574.
25.
Makinde
,
O. D.
, and
Animasaun
,
I. L.
, 2016, “
Bioconvection in MHD Nanofluid Flow With Nonlinear Thermal Radiation and Quartic Autocatalysis Chemical Reaction past an Upper Surface of a Paraboloid of Revolution
,”
Int. J. Therm. Sci.
,
109
, pp.
159
171
.
26.
Makinde
,
O. D.
, and
Animasaun
,
I. L.
, 2016, “
Thermophoresis and Brownian Motion Effects on MHD Bioconvection of Nanofluid With Nonlinear Thermal Radiation and Quartic Chemical Reaction Past an Upper Horizontal Surface of a Paraboloid of Revolution
,”
J. Mol. Liq.
,
221
, pp.
733
743
.
27.
Boussinesq
,
J.
,
1903
,
Théorie Analytique De La Chaleur
,
Gauthier-Villars
, Paris, France.
28.
Shang
,
D.-Y.
, and
Wang
,
B.-X.
,
1990
, “
Effect of Variable Thermophysical Properties on Laminar Free Convection of Gas
,”
Int. J. Heat Mass Transfer
,
33
(
7
), pp.
387
1395
.
29.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
New York
.
30.
Hayase
,
T.
,
Humphrey
,
J. A. C.
, and
Greif
,
R.
,
1992
, “
A Consistently Formulated QUICK Scheme for Fast and Stable Convergence Using Finite Volume Iterative Calculation Procedures
,”
J. Comput. Phys.
,
98
(
1
), pp.
108
118
.
31.
Fusegi
,
T.
,
Hyun
,
J. M.
,
Kuwahara
,
K.
, and
Farouk
,
B.
,
1991
, “
A Numerical Study of Three-Dimensional Natural Convection in a Differentially Heated Cubical Enclosure
,”
Int. J. Heat Mass Transfer
,
34
(
6
), pp.
1543
1557
.
32.
Bocu
,
Z.
, and
Altac
,
Z.
,
2011
, “
Laminar Natural Convection Heat Transfer and Air Flow in Three-Dimensional Rectangular Enclosures With Pin Arrays Attached to Hot Wall
,”
Appl. Therm. Eng.
,
31
(
16
), pp.
3189
3195
.
You do not currently have access to this content.