Nonequilibrium molecular dynamics (MD) simulations have been performed to understand the evaporation of a liquid droplet in the presence of a solid nanoparticle. The influence of solid–liquid interaction strength (εsl) on the evaporation properties was addressed. The system consists of a solid nanoparticle (platinum) engulfed in a droplet (argon) in Argon vapor environment. After the equilibration of this nanoparticle embedded droplet with its vapor, the boundary of this system is heated continuously to evaporate the droplet. It is observed that the addition of a nanoparticle to the droplet resulted in a slower evaporation rate when compared to that of a pure droplet. It was found that the evaporation rate of the droplet is decreased with increasing solid–liquid interaction strength (εsl) and those liquid atoms around the solid nanoparticle with higher εsl are able to delay evaporation even at higher temperature owing to its decreased interfacial resistance. In order to analyze further on the vibrational coupling of the solid and liquid atoms, the vibrational density of states (VDOS) of the solid atoms is studied. It is observed that the DOS of the solid atoms exhibited a higher population in the lower frequency range with the highest peak observed for a lower value of εsl. For low values of εsl, we observe a decrease in the overlap between the VDOS of the solid atom and the interfacial liquid atoms. It is observed that for higher values of εsl, the particle is able to retain a structured layer of liquid even at high temperature and also a higher heat input is necessitated to break the interaction strength of the liquid molecules around the solid nanoparticle, which makes it possible in delaying the complete evaporation of the droplet.

References

1.
Kryukov
,
A. P.
,
Levashov
,
V. Yu.
, and
Sazhin
,
S. S.
,
2004
, “
Evaporation of Diesel Fuel Droplets: Kinetic Versus Hydrodynamic Models
,”
Int. J. Heat Mass Transfer
,
47
(
12–13
), pp.
2541
2549
.
2.
Langmuir
,
I.
,
1918
, “
The Evaporation of Small Spheres
,”
Phys. Rev.
,
12
, pp.
368
370
.
3.
Frohn
,
A.
, and
Roth
,
N.
,
2000
,
Dynamics of Droplets
,
Springer Science & Business Media
, Berlin.
4.
Rusanov
,
A.
, and
Brodskaya
,
E.
,
1977
, “
The Molecular Dynamics Simulation of a Small Drop
,”
J. Colloid Interface Sci.
,
62
(
3
), pp.
542
555
.
5.
Thompson
,
S. M.
,
Gubbins
,
K. E.
,
Walton
,
J. P. R. B.
,
Chantry
,
R. A. R.
, and
Rowlinson
,
J. S.
,
1984
, “
A Molecular Dynamics Study of Liquid Drops
,”
J. Chem. Phys.
,
81
(
1
), pp.
530
542
.
6.
Long
,
L. N.
,
Micci
,
M. M.
, and
Wong
,
B. C.
,
1996
, “
Molecular Dynamics Simulations of Droplet Evaporation
,”
Comput. Phys. Commun.
,
96
(
2–3
), pp.
167
172
.
7.
Little
,
J. K.
,
1996
, “
Simulation of Droplet Evaporation in Supercritical Environments Using Parallel Molecular Dynamics
,”
Ph.D. thesis
, Pennsylvania State University, State College, PA.http://www.dtic.mil/docs/citations/ADA318725
8.
Kaltz
,
T.
,
Long
,
L.
,
Micci
,
M. M.
, and
Little
,
J.
,
1998
, “
Supercritical Vaporization of Liquid Oxygen Droplets Using Molecular Dynamics
,”
Combust. Sci. Technol.
,
136
(
1–6
), pp.
279
301
.
9.
Walther
,
J. H.
, and
Koumoutsakos
,
P.
,
2001
, “
Molecular Dynamics Simulation of Nanodroplet Evaporation
,”
ASME J. Heat Transfer
,
123
(
4
), pp.
741
748
.
10.
Sumardiono
,
S.
, and
Fischer
,
J.
,
2006
, “
Molecular Simulations of Droplet Evaporation Processes: Adiabatic Pressure Jump Evaporation
,”
Int. J. Heat Mass Transfer
,
49
(
5–6
), pp.
1148
1161
.
11.
Sumardiono
,
S.
, and
Fischer
,
J.
,
2007
, “
Molecular Simulations of Droplet Evaporation by Heat Transfer
,”
Microfluid. Nanofluid.
,
3
(
2
), pp.
127
140
.
12.
Landry
,
E. S.
,
Mikkilineni
,
S.
,
Paharia
,
M.
, and
McGaughey
,
A. J. H.
,
2007
, “
Droplet Evaporation: A Molecular Dynamics Investigation
,”
J. Appl. Phys.
,
102
(
12
), p.
124301
.
13.
Hołyst
,
R.
, and
Litniewski
,
M.
,
2008
, “
Heat Transfer at the Nanoscale: Evaporation of Nanodroplets
,”
Phys. Rev. Lett.
,
100
, p.
055701
.
14.
Wang
,
B.-B.
,
Wang
,
X.-D.
,
Chen
,
M.
, and
Xu
,
J.-L.
,
2013
, “
Molecular Dynamics Simulations on Evaporation of Droplets With Dissolved Salts
,”
Entropy
,
15
(
4
), pp.
1232
1246
.
15.
Sajith
,
V.
,
Sobhan
,
C. B.
, and
Peterson
,
G. P.
,
2010
, “
Experimental Investigations on the Effects of Cerium Oxide Nanoparticle Fuel Additives on Biodiesel
,”
Adv. Mech. Eng.
,
2
, p.
581407
.
16.
Yetter
,
R. A.
,
Risha
,
G. A.
, and
Son
,
S. F.
,
2009
, “
Metal Particle Combustion and Nanotechnology
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
1819
1838
.
17.
Tyagi
,
H.
,
Phelan
,
P. E.
,
Prasher
,
R.
,
Peck
,
R.
,
Lee
,
T.
,
Pacheco
,
J. R.
, and
Arentzen
,
P.
,
2008
, “
Increased Hot-Plate Ignition Probability for Nanoparticle-Laden Diesel Fuel
,”
Nano Lett.
,
8
(
5
), pp.
1410
1416
.
18.
Allen
,
C.
,
Mittal
,
G.
,
Sung
,
C.-J.
,
Toulson
,
E.
, and
Lee
,
T.
,
2011
, “
An Aerosol Rapid Compression Machine for Studying Energetic-Nanoparticle-Enhanced Combustion of Liquid Fuels
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
3367
3374
.
19.
Tanvir
,
S.
, and
Qiao
,
L.
,
2014
, “
Effect of Addition of Energetic Nanoparticles on Droplet-Burning Rate of Liquid Fuels
,”
J. Propul. Power
,
31
(
1
), pp.
408
415
.
20.
Tanvir
,
S.
, and
Qiao
,
L.
,
2016
, “
Droplet Burning Rate Enhancement of Ethanol With the Addition of Graphite Nanoparticles: Influence of Radiation Absorption
,”
Combust. Flame
,
166
, pp.
34
44
.
21.
Chen
,
G.
,
1996
, “
Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles
,”
ASME J. Heat Transfer
,
118
(
3
), pp.
539
545
.
22.
Merabia
,
S.
,
Shenogin
,
S.
,
Joly
,
L.
,
Keblinski
,
P.
, and
Barrat
,
J.-L.
,
2009
, “
Heat Transfer From Nanoparticles: A Corresponding State Analysis
,”
Proc. Natl. Acad. Sci.
,
106
(
36
), pp.
15113
15118
.
23.
Merabia
,
S.
,
Keblinski
,
P.
,
Joly
,
L.
,
Lewis
,
L. J.
, and
Barrat
,
J.-L.
,
2009
, “
Critical Heat Flux Around Strongly Heated Nanoparticles
,”
Phys. Rev. E
,
79
(
2
), p.
021404
.
24.
Spijker
,
P.
,
Markvoort
,
A. J.
,
Nedea
,
S. V.
, and
Hilbers
,
P. A. J.
,
2010
, “
Computation of Accommodation Coefficients and the Use of Velocity Correlation Profiles in Molecular Dynamics Simulations
,”
Phys. Rev. E
,
81
(
1
), p.
011203
.
25.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.
26.
Humphrey
,
W.
,
Dalke
,
A.
, and
Schulten
,
K.
,
1996
, “
VMD—Visual Molecular Dynamics
,”
J. Mol. Graph.
,
14
(
1
), pp.
33
38
.
27.
Vrabec
,
J.
,
Kedia
,
G. K.
,
Fuchs
,
G.
, and
Hasse
,
H.
,
2006
, “
Comprehensive Study of the Vapour-Liquid Coexistence of the Truncated and Shifted Lennard-Jones Fluid Including Planar and Spherical Interface Properties
,”
Mol. Phys.
,
104
(
9
), pp.
1509
1527
.
28.
Haile
,
J.
,
1991
,
Molecular Dynamics Simulation Elementary Methods
, 1st ed.,
Wiley
, Hoboken, NJ.
29.
Allen
,
M. P.
, and
Tildesley
,
S. J.
,
1986
,
Computer Simulation of Liquids
, 1st ed.,
Clarendon Press
, Gloucestershire, UK.
30.
Nosé
,
S.
,
1984
, “
A Unified Formulation of the Constant Temperature Molecular Dynamics Methods
,”
J. Chem. Phys.
,
81
(
1
), pp.
511
519
.
31.
Nosé
,
S.
,
1984
, “
A Molecular Dynamics Method for Simulations in the Canonical Ensemble
,”
Mol. Phys.
,
52
(
2
), pp.
255
268
.
32.
Maruyama
,
S.
,
Matsumoto
,
S.
, and
Ogita
,
A.
,
1994
, “
Surface Phenomena of Molecular Clusters by Molecular Dynamics Method
,”
Therm. Sci. Eng.
,
2
(1), pp.
77
84
http://www.photon.t.u-tokyo.ac.jp/~maruyama/papers/94/tse21.pdf.
33.
Chen
,
R.-H.
,
Phuoc
,
T. X.
, and
Martello
,
D.
,
2010
, “
Effects of Nanoparticles on Nanofluid Droplet Evaporation
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
3677
3682
.
34.
Shenogina
,
N.
,
Godawat
,
R.
,
Keblinski
,
P.
, and
Garde
,
S.
,
2009
, “
How Wetting and Adhesion Affect Thermal Conductance of a Range of Hydrophobic to Hydrophilic Aqueous Interfaces
,”
Phys. Rev. Lett.
,
102
, p.
156101
.
35.
Barrat
,
J.-L.
, and
Chiaruttini
,
F.
,
2003
, “
Kapitza Resistance at the Liquid-Solid Interface
,”
Mol. Phys.
,
101
(
11
), pp.
1605
1610
.
36.
Harikrishna
,
H.
,
Ducker
,
W. A.
, and
Huxtable
,
S. T.
,
2013
, “
The Influence of Interface Bonding on Thermal Transport Through Solid–Liquid Interfaces
,”
Appl. Phys. Lett.
,
102
(
25
), p.
251606
.
37.
Hu
,
H.
, and
Sun
,
Y.
,
2012
, “
Effect of Nanopatterns on Kapitza Resistance at a Water-Gold Interface During Boiling: A Molecular Dynamics Study
,”
J. Appl. Phys.
,
112
(
5
), p.
053508
.
38.
Tabor
,
D.
,
1991
,
Gases, Liquids and Solids: And Other States of Matter
, 3rd ed.,
Cambridge University Press
,
New York
.
39.
Ge
,
S.
, and
Chen
,
M.
,
2013
, “
Vibrational Coupling and Kapitza Resistance at a Solid-Liquid Interface
,”
Int. J. Thermophys.
,
34
(
1
), pp.
64
77
.
40.
Issa
,
K. M.
, and
Mohamad
,
A. A.
,
2012
, “
Lowering Liquid-Solid Interfacial Thermal Resistance With Nanopatterned Surfaces
,”
Phys. Rev. E
,
85
, p.
031602
.
41.
Kara
,
A.
, and
Rahman
,
T. S.
,
1998
, “
Vibrational Properties of Metallic Nanocrystals
,”
Phys. Rev. Lett.
,
81
, pp.
1453
1456
.
42.
Derlet
,
P. M.
,
Meyer
,
R.
,
Lewis
,
L. J.
,
Stuhr
,
U.
, and
Van Swygenhoven
,
H.
,
2001
, “
Low-Frequency Vibrational Properties of Nanocrystalline Materials
,”
Phys. Rev. Lett.
,
87
, p.
205501
.
You do not currently have access to this content.