The effect of nanoparticle coating on the performance of a miniature loop heat pipe (mLHP) is experimentally investigated for heat inputs of 20–380 W using distilled water as the working fluid. Applications include the cooling of electronic devices such as circuit breaker in low voltage switch board and insulated gate bipolar transistor. Physical vapor deposition method is used to coat the nanoparticles on the evaporator surface for different coating thicknesses of 100 nm, 200 nm, 300 nm, 400 nm, and 500 nm, respectively. An optimum filling ratio (FR) of 30% is chosen for the analysis. Experimental findings show that the nanoparticle coating gives a remarkable improvement in heat transfer of the heat pipe. An average reduction of 6.7%, 11.9%, 17.2%, and 22.6% in thermal resistance is observed with coating thicknesses of 100 nm, 200 nm, 300 nm, and 400 nm, respectively. Similarly, enhancements in evaporator heat transfer coefficients of 47%, 63.5%, 73.5%, and 86% are noted for the same coating thicknesses, respectively. Evaporator wall temperature decreased by 15.4 °C for 380 W with a coating thickness of 400 nm. The repeatability test ensures the repeatability of experiments and the stability of coatings in the long run.

References

1.
Gunnasegaran
,
P.
,
Abdullah
,
M. Z.
,
Yusoff
,
M. Z.
, and
Abdullah
,
S. F.
,
2015
, “
Optimization of SiO2 Nanoparticle Mass Concentration and Heat Input on a Loop Heat Pipe
,”
Case Stud. Therm. Eng.
,
6
, pp.
238
250
.
2.
Gunnasegaran
,
P.
,
Abdullah
,
M. Z.
, and
Shuaib
,
N. H.
,
2013
, “
Influence of Nanofluid on Heat Transfer in a Loop Heat Pipe
,”
Int. Commun. Heat Mass Transfer
,
47
, pp.
82
91
.
3.
Putra
,
N.
,
Saleh
,
R.
,
Septiadi
,
W. N.
,
Okta
,
A.
, and
Hamid
,
Z.
,
2014
, “
Thermal Performance of Biomaterial Wick Loop Heat Pipes With Water-Base Al2O3 Nanofluids
,”
Int. J. Therm. Sci.
,
76
, pp.
128
136
.
4.
Wang
,
X.
,
Wan
,
Z.
, and
Tang
,
Y.
,
2013
, “
Heat Transfer Mechanism of Miniature Loop Heat Pipe With Water–Copper Nanofluid: Thermodynamics Model and Experimental Study
,”
Heat Mass Transfer
,
49
(
7
), pp.
1001
1007
.
5.
Wan
,
Z.
,
Deng
,
J.
,
Li
,
B.
,
Xu
,
Y.
,
Wang
,
X.
, and
Tang
,
Y.
,
2015
, “
Thermal Performance of a Miniature Loop Heat Pipe Using Water–Copper Nanofluid
,”
Appl. Therm. Eng.
,
78
, pp.
712
719
.
6.
Tharayil
,
T.
,
Asirvatham
,
L. G.
,
Ravindran
,
V.
, and
Wongwises
,
S.
,
2016
, “
Effect of Filling Ratio on the Performance of a Novel Miniature Loop Heat Pipe Having Different Diameter Transport Lines
,”
Appl. Therm. Eng.
,
106
, pp.
588
600
.
7.
Tharayil
,
T.
,
Asirvatham
,
L. G.
,
Ravindran
,
V.
, and
Wongwises
,
S.
,
2016
, “
Thermal Performance of Miniature Loop Heat Pipe With Graphene-Water Nanofluid
,”
Int. J. Heat Mass Transfer
,
93
, pp.
957
968
.
8.
Tharayil
,
T.
,
Asirvatham
,
L. G.
,
Dau
,
M. J.
, and
Wongwises
,
S.
,
2016
, “
Entropy Generation Analysis of a Miniature Loop Heat Pipe With Graphene-Water Nanofluid: Thermodynamics Model and Experimental Study
,”
Int. J. Heat Mass Transfer
,
106
, pp.
407
421
.
9.
Ramachandran
,
R.
,
Ganesan
,
K.
,
Rajkumar
,
M. R.
,
Asirvatham
,
L. G.
, and
Wongwises
,
S.
,
2016
, “
Comparative Study of the Effect of Hybrid Nanoparticle on the Thermal Performance of Cylindrical Screen Mesh Heat Pipe
,”
Int. Commun. Heat Mass Transfer
,
76
, pp.
294
300
.
10.
Asirvatham
,
L. G.
,
Nimmagadda
,
R.
, and
Wongwises
,
S.
,
2013
, “
Operational Limitations of Heat Pipes With Silver-Water Nanofluids
,”
ASME J. Heat Transfer
,
135
(
11
), p.
111011
.
11.
Asirvatham
,
L. G.
,
Nimmagadda
,
R.
, and
Wongwises
,
S.
,
2010
, “
Heat Transfer Performance of Screen Mesh Heat Pipes Using Silver-Water Nanofluid
,”
Int. J. Heat Mass Transfer
,
60
, pp.
201
209
.
12.
Kumaresan
,
G.
,
Venkatachalapathy
,
S.
,
Asirvatham
,
L. G.
, and
Wongwises
,
S.
,
2014
, “
Comparative Study on Heat Transfer Characteristics of Sintered and Mesh Wick Heat Pipes Using CuO Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
57
, pp.
208
215
.
13.
Kumaresan
,
G.
,
Venkatachalapathy
,
S.
, and
Asirvatham
,
L. G.
,
2014
, “
Experimental Investigation on Enhancement in Thermal Characteristics of Sintered Wick Heat Pipe Using CuO Nanofluids
,”
Int. J. Heat Mass Transfer
,
72
, pp.
507
516
.
14.
Solomon
,
A. B.
,
Ramachandran
,
K.
,
Asirvatham
,
L. G.
, and
Pillai
,
B. C.
,
2014
, “
Numerical Analysis of a Screen Mesh Wick Heat Pipe With Cu/Water Nanofluid
,”
Int. J. Heat Mass Transfer
,
75
, pp.
523
533
.
15.
Asirvatham
,
L. G.
,
Wongwises
,
S.
, and
Babu
,
J.
,
2015
, “
Heat Transfer Performance of a Glass Thermosyphon Using Graphene-Acetone Nanofluid
,”
ASME J. Heat Transfer
,
137
(
11
), p.
111502
.
16.
Liu
,
Z.-H.
, and
Li
,
Y.-Y.
,
2012
, “
A New Frontier of Nanofluid Research-Application of Nanofluids in Heat Pipes
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
6786
6797
.
17.
Qu
,
J.
, and
Wu
,
H.
,
2011
, “
Thermal Performance Comparison of Oscillating Heat Pipes With SiO2/Water and Al2O3/Water Nanofluids
,”
Int. J. Therm. Sci.
,
50
(
10
), pp.
1954
1962
.
18.
Solomon
,
A. B.
,
Ramachandran
,
K.
, and
Pillai
,
B. C.
,
2012
, “
Thermal Performance of a Heat Pipe With Nanoparticles Coated Wick
,”
Appl. Therm. Eng.
,
36
, pp.
106
112
.
19.
Qu
,
J.
,
Wu
,
H.
, and
Cheng
,
P.
,
2010
, “
Thermal Performance of an Oscillating Heat Pipe With Al2O3–Water Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
37
(
2
), pp.
111
115
.
20.
Do
,
K. H.
,
Ha
,
H. J.
, and
Jang
,
S. P.
,
2010
, “
Thermal Resistance of Screen Mesh Wick Heat Pipes Using the Water-Based Al2O3 Nanofluids
,”
Int. J. Heat Mass Transfer
,
53
(
25–26
), pp.
5888
5894
.
21.
Lu
,
L.
,
Lv
,
L. C.
, and
Liu
,
Z. H.
,
2011
, “
Application of Cu-Water and Cu-Ethanol Nanofluids in a Small Flat Capillary Pumped Loop
,”
Thermochim. Acta
,
512
(
1–2
), pp.
98
104
.
22.
You
,
S. M.
,
Amaya
,
M.
, and
Kwark
,
S. M.
,
2010
, “
A Review of Enhancement of Boiling Heat Transfer Through Nanofluids and Nanoparticle Coatings
,”
Int. J. Air-Cond. Refrig.
,
18
(
4
), pp.
247
263
.
23.
Ahn
,
H. S.
, and
Kimi
,
M. H.
,
2012
, “
A Review on Critical Heat Flux Enhancement With Nanofluids and Surface Modification
,”
ASME J. Heat Transfer
,
134
(
2
), p.
024001
.
24.
Das
,
S.
, and
Bhaumik
,
S.
,
2016
, “
The Effect of Coating Thickness and Roughness of Nucleate Pool Boiling Heat Transfer on Nanoparticle Coated Surface
,”
J. Inst. Eng. (India): Ser. E
,
97
(
1
), pp.
55
62
.
25.
Lee
,
C. Y.
,
Bhuiya
,
M. M. H.
, and
Kim
,
K. J.
,
2010
, “
Pool Boiling Heat Transfer With Nano-Porous Surface
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4274
4279
.
26.
Chien
,
L. H.
, and
Webb
,
R. L.
,
1998
, “
Measurement of Bubble Dynamics on an Enhanced Boiling Surface
,”
Exp. Therm. Fluid Sci.
,
16
(
3
), pp.
177
186
.
27.
Li
,
C.
, and
Peterson
,
G. P.
,
2007
, “
Parametric Study of Pool Boiling on Horizontal Highly Conductive Microporous Coated Surfaces
,”
ASME J. Heat Transfer
,
129
(
11
), pp.
1465
1475
.
28.
Das
,
S.
,
Kumar
,
D. S.
, and
Bhaumik
,
S.
,
2016
, “
Experimental Study of Nucleate Pool Boiling Heat Transfer of Water on Silicon Oxide Nanoparticle Coated Copper Heating Surface
,”
Appl. Therm. Eng.
,
96
, pp.
555
567
.
29.
Singh
,
R. R.
,
Selladurai
,
V.
,
Ponkarthik
,
P. K.
, and
Solomon
,
A. B.
,
2015
, “
Effect of Anodization on the Heat Transfer Performance of Flat Thermosyphon
,”
Exp. Therm. Fluid Sci.
,
68
, pp.
574
581
.
30.
Solomon
,
A. B.
,
Ram Kumar
,
A. M.
,
Ramachandran
,
K.
,
Pillai
,
B. C.
,
Kumar
,
C. S.
,
Sharifpur
,
M.
, and
Meyer
,
J. P.
,
2017
, “
Characterization of a Grooved Heat Pipe With an Anodised Surface
,”
Heat Mass Transfer
,
53
(
3
), pp.
753
763
.https://doi.org/10.1007/s00231-016-1856-8
31.
Solomon
,
A. B.
,
Roshan
,
R.
,
Vincent
,
W.
,
Karthikeyan
,
V. K.
, and
Asirvatham
,
L. G.
,
2015
, “
Heat Transfer Performance of an Anodized Two-Phase Closed Thermosyphon With Refrigerant as Working Fluid
,”
Int. J. Heat Mass Transfer
,
82
, pp.
521
529
.
32.
Solomon
,
A. B.
,
Mathew
,
A.
,
Ramachandran
,
K.
,
Pillai
,
B. C.
, and
Karthikeyan
,
V. K.
,
2013
, “
Thermal Performance of Anodized Two Phase Closed Thermosyphon (TPCT)
,”
Exp. Therm. Fluid Sci.
,
48
, pp.
49
57
.
33.
Vasiliev
,
L.
,
Grakovich
,
L.
,
Rabetsky
,
M.
,
Romanenkov
,
V.
,
Vasiliev
,
L.
, Jr.
,
Ayel
,
V.
,
Bertin
,
Y.
,
Romestant
,
C.
, and
Hugon
,
J.
,
2010
, “
Grooved Heat Pipes With a Nanoporous Deposit in an Evaporator
,”
Heat Pipe Sci. Technol., Int. J.
,
1
(
3
), pp.
219
236
.
34.
Khodabandeh
,
R.
, and
Furberg
,
R.
,
2010
, “
Heat Transfer, Flow Regime and Instability of a Nano- and Micro-Porous Structure Evaporator in a Two-Phase Thermosyphon Loop
,”
Int. J. Therm. Sci.
,
49
(
7
), pp.
1183
1192
.
35.
Rahimi
,
M.
,
Asgary
,
K.
, and
Jesri
,
S.
,
2010
, “
Thermal Characteristics of a Resurfaced Condenser and Evaporator Closed Two-Phase Thermosyphon
,”
Int. Commun. Heat Mass Transfer
,
37
(
6
), pp.
703
710
.
36.
Wang
,
C. H.
, and
Dhir
,
V. K.
,
1993
, “
Effect of Surface Wettability on Active Nucleation Site Density During Pool Boiling of Water on a Vertical Surface
,”
ASME J. Heat Transfer
,
115
(
3
), pp.
659
669
.
37.
Tharayil
,
T.
,
Asirvatham
,
L. G.
,
Cassie
,
C. F. M.
, and
Wongwises
,
S.
,
2017
, “
Performance of Cylindrical and Flattened Heat Pipes at Various Inclinations Including Repeatability in Anti-Gravity—A Comparative Study
,”
Appl. Therm. Eng.
,
122
, pp.
685
696
.
You do not currently have access to this content.