Hydrodynamics and heat transfer in micro/nano channels filled with porous media for different porosities and Knudsen numbers, Kn, ranging from 0.1 to 10, are considered. The performance of standard lattice Boltzmann method (LBM) is confined to the microscale flows with a Knudsen number less than 0.1. Therefore, by considering the rarefaction effect on the viscosity and thermal conductivity, a modified thermal LBM is used, which is able to extend the ability of LBM to simulate wide range of Knudsen flow regimes. The present study reports the effects of the Knudsen number and porosity on the flow rate, permeability, and mean Nusselt number. The Knudsen's minimum effect for micro/nano channels filled with porous media was observed. In addition to the porosity and Knudsen number, the obstacle sizes have important role in the heat transfer, so that enhanced heat transfer is observed when the obstacle sizes decrease. For the same porosity and Knudsen number, the inline porous structure has the highest heat transfer performance.

References

1.
Ai
,
Y.
,
Yalcin
,
S. E.
,
Gu
,
D.
,
Baysal
,
O.
,
Baumgart
,
H.
,
Qian
,
S.
, and
Beskok
,
A.
,
2010
, “
A Low-Voltage Nano-Porous Electroosmotic Pump
,”
J. Colloid Interface Sci.
,
350
(
2
), pp.
465
470
.
2.
Jiang
,
R. H.
,
Lin
,
C. F.
,
Yang
,
C. C.
,
Fan
,
F. H.
,
Huang
,
Y. C.
,
Tseng
,
W.-P.
,
Cheng
,
P. F.
,
Wu
,
K. C.
, and
Wang
,
J. H.
,
2012
, “
InGaN Light-Emitting Diode With a Nanoporous/Air-Channel Structure
,”
Appl. Phys. Express
,
6
(
1
), p.
012103
.
3.
Kondrashova
,
D.
,
Lauerer
,
A.
,
Mehlhorn
,
D.
,
Jobic
,
H.
,
Feldhoff
,
A.
,
Thommes
,
M.
,
Chakraborty
,
D.
,
Gommes
,
C.
,
Zecevic
,
J.
,
Jongh
,
P.
,
Bunde
,
A.
,
Kärger
,
J.
, and
Valiullin
,
R.
,
2017
, “
Scale-Dependent Diffusion Anisotropy in Nanoporous Silicon
,”
Sci. Rep.
,
7
, p.
40207
.
4.
Ohba
,
T.
,
2016
, “
Limited Quantum Helium Transportation Through Nano-Channels by Quantum Fluctuation
,”
Sci. Rep.
,
6
(
1
), p.
28992
.
5.
Jeong
,
N.
,
Choi
,
D. H.
, and
Lin
,
C. L.
,
2006
, “
Prediction of Darcy-Forchheimer Drag for Micro-Porous Structures of Complex Geometry Using the Lattice Boltzmann Method
,”
J. Micromech. Microeng.
,
16
(
10
), pp.
2240
2250
.
6.
Yuranov
,
I.
,
Renken
,
A.
, and
Kiwi-Minsker
,
L.
,
2005
, “
Zeolite/Sintered Metal Fibers Composites as Effective Structured Catalyst
,”
Appl. Catal.
,
281
(
55
), pp. 55–60.
7.
Kiwi-Minsker
,
L.
, and
Renken
,
A.
,
2005
, “
Microstructured Reactors for Catalytic Reactions
,”
Catal. Today
,
110
(
2
), pp. 2–14.
8.
Assis
,
O. B. G.
, and
Claro
,
L. C.
,
2003
, “
Immobilized Lysozyme Protein on Fibrous Medium: Preliminary Results for Microfilteration Applications
,”
Electron. J. Biotechnol.
,
6
(
2
), epub.
9.
Brask
,
A.
,
Goranovic
,
G.
,
Jensen
,
M. J.
, and
Bruus
,
H.
,
2005
, “
A Novel Electro-Osmotic Pump Design for Nonconducting Liquids: Theoretical Analysis of Flow Rate–Pressure Characteristics and Stability
,”
J. Micromech. Microeng.
,
15
(
4
), pp.
883
891
.
10.
Bazant
,
M. Z.
, and
Squires
,
T. M.
,
2004
, “
Induced-Charge Electrokinetic Phenomena: Theory and Microfluidic Applications
,”
Phys. Rev. Lett.
,
92
(6), p. 066101.
11.
Oddy
,
M. H.
,
Santiago
,
J. G.
, and
Michelsen
,
J. C.
,
2001
, “
Electrokinetic Instability Micromixing
,”
Anal. Chem.
,
73
(
24
), pp.
5822
5832
.
12.
Biddiss
,
E.
,
Erickson
,
D.
, and
Li
,
D. Q.
,
2004
, “
Heterogeneous Surface Charge Enhanced Micromixing for Electrokinetic Flows
,”
Anal. Chem.
,
7
(
11
), pp.
3208
3213
.
13.
Wong
,
P. K.
,
Wang
,
J. T.
,
Deval
,
J. H.
, and
Ho
,
C. M.
,
2004
, “
Electrokinetics in Micro Devices for Biotechnology Applications
,”
IEEE/ASME Trans. Mechatronics
,
9
(
2
), pp.
366
376
.
14.
Jiang
,
P. X.
,
Fan
,
M. H.
,
Si
,
G. S.
, and
Ren
,
Z. P.
,
2001
, “
Thermal-Hydraulic Performance of Small Scale Micro-Channel and Porous-Media Heat-Exchangers
,”
Int. J. Heat Mass Transfer
,
44
(
5
), pp.
1039
1051
.
15.
Mahdavi
,
M.
,
Saffar-Avval
,
M.
,
Tiari
,
S.
, and
Mansoori
,
Z.
,
2014
, “
Entropy Generation and Heat Transfer Numerical Analysis in Pipes Partially Filled With Porous Medium
,”
Int. J. Heat Mass Transfer
,
79
, pp.
496
506
.
16.
Rong
,
F.
,
Zhang
,
W.
,
Shi
,
B.
, and
Guo
,
Z.
,
2014
, “
Numerical Study of Heat Transfer Enhancement in a Pipe Filled With Porous Media by Axisymmetric TLB Model Based on GPU
,”
Int. J. Heat Mass Transfer
,
70
, pp.
1040
1049
.
17.
Buonomo
,
B.
,
Manca
,
O.
, and
Lauriat
,
G.
,
2014
, “
Forced Convection in Micro-Channels Filled With Porous Media in Local Thermal Non-Equilibrium Conditions
,”
Int. J. Therm. Sci.
,
77
, pp.
206
222
.
18.
Shokouhmand
,
H.
,
Meghdadi Isfahani
,
A. H.
, and
Shirani
,
E.
,
2010
, “
Friction and Heat Transfer Coefficient in Micro and Nano Channels Filled With Porous Media for Wide Range of Knudsen Number
,”
Int. Commun. Heat Mass Transfer
,
37
(
7
), pp.
890
894
.
19.
Karniadakis
,
G.
,
Beskok
,
A.
, and
Aluru
,
N.
,
2005
,
Microflows and Nanoflows Fundamentals and Simulation
,
Springer
,
New York
.
20.
Abolfazli Esfahani
,
J.
, and
Norouzi
,
A.
,
2014
, “
Two Relaxation Time Lattice Boltzmann Model for Rarefied Gas Flows
,”
Physica A
,
393
, pp.
51
61
.
21.
Liu
,
X.
, and
Guo
,
Z.
,
2013
, “
A Lattice Boltzmann Study of Gas Flows in a Long Micro-Channel
,”
Comput. Math. Appl.
,
65
(
2
), pp.
186
193
.
22.
Gokaltun
,
S.
, and
Dulikravich
,
G. S.
,
2014
, “
Lattice Boltzmann Method for Rarefied Channel Flows With Heat Transfer
,”
Int. J. Heat Mass Transfer
,
78
, pp.
796
804
.
23.
Islam
,
M. S.
,
Caulkin
,
R.
,
Jia
,
X.
,
Fairweather
,
M.
, and
Williams
,
R. A.
,
2012
, “
Prediction of the Permeability of Packed Beds of Non-Spherical Particles
,”
Comput. Aided Chem. Eng.
,
30
, pp.
1088
1092
.
24.
Lopez
,
P.
, and
Bayazitoglu
,
Y.
,
2013
, “
An Extended Thermal Lattice Boltzmann Model for Transition Flow
,”
Int. J. Heat Mass Transfer
,
65
, pp.
374
380
.
25.
Chikatamarla
,
S. S.
, and
Karlin
,
I. V.
,
2006
, “
Entropy and Galilean Invariance of Lattice Boltzmann Theories
,”
Phys. Rev. Lett.
,
97
(
19
), p.
190601
.
26.
Ansumali
,
S.
,
Karlin
,
I. V.
,
Arcidiacono
,
S.
,
Abbas
,
A.
, and
Prasianakis
,
N. I.
,
2007
, “
Hydrodynamics Beyond Navier–Stokes: Exact Solution to the Lattice Boltzmann Hierarchy
,”
Phys. Rev. Lett.
,
98
(
12
), p.
124502
.
27.
Kim
,
S. H.
,
Pitsch
,
H. P.
, and
Boyd
,
I. D.
,
2008
, “
Accuracy of Higher-Order Lattice Boltzmann Methods for Microscale Flows With Finite Knudsen Numbers
,”
J. Comput. Phys.
,
227
(
19
), pp.
8655
8671
.
28.
Zhang
,
Y. H.
,
Gu
,
X. J.
,
Barber
,
R. W.
, and
Emerson
,
D. R.
,
2006
, “
Capturing Knudsen Layer Phenomena Using a Lattice Boltzmann Model
,”
Phys. Rev. E.
,
74
(
4
), p.
046704
.
29.
Tang
,
G. H.
,
Zhang
,
Y. H.
, and
Emerson
,
D. R.
,
2008
, “
Lattice Boltzmann Models for Nonequilibrium Gas Flows
,”
Phys. Rev. E.
,
77
(
4
), p.
046701
.
30.
Tang
,
G. H.
,
Zhang
,
Y. H.
,
Gu
,
X. J.
, and
Emerson
,
D. R.
,
2008
, “
Lattice Boltzmann Modeling Knudsen Layer Effect in Non-Equilibrium Flows
,”
EPL
,
83
(
4
), p.
40008
.
31.
Homayoon
,
A.
,
Meghdadi Isfahani
,
A. H.
,
Shirani
,
E.
, and
Ashrafizadeh
,
M.
,
2011
, “
A Novel Modified Lattice Boltzmann Method for Simulation of Gas Flows in Wide Range of Knudsen Number
,”
Int. Commun. Heat Mass Transfer
,
38
(
6
), pp.
827
832
.
32.
Shokouhmand
,
H.
, and
Meghdadi Isfahani
,
A. H.
,
2011
, “
An Improved Thermal Lattice Boltzmann Model for Rarefied Gas Flows in Wide Range of Knudsen Number
,”
Int. Commun. Heat Mass Transfer
,
38
(
10
), pp.
1463
1469
.
33.
Zhuo
,
C.
, and
Zhong
,
C.
,
2013
, “
Filter-Matrix Lattice Boltzmann Model for Microchannel Gas Flows
,”
Phys. Rev. E
,
88
(
5
), p.
053311
.
34.
Liou
,
T.-M.
, and
Lin
,
C.-T.
,
2013
, “
Study on Microchannel Flows With a Sudden Contraction–Expansion at a Wide Range of Knudsen Number Using Lattice Boltzmann Method
,”
Microfluid. Nanofluid.
,
16
(1), pp. 315–327.
35.
Li
,
Q.
,
He
,
Y. L.
,
Tang
,
G. H.
, and
Tao
,
W. Q.
,
2011
, “
Lattice Boltzmann Modeling of Microchannel Flows in the Transition Flow Regime
,”
Microfluid. Nanofluid.
,
10
(
3
), pp.
607
618
.
36.
Kalarakis
,
A. N.
,
Michalis
,
V. K.
,
Skouras
,
E. D.
, and
Burganos
,
V. N.
,
2012
, “
Mesoscopic Simulation of Rarefied Flow in Narrow Channels and Porous Media
,”
Transp. Porous Media
,
94
(
1
), pp.
385
398
.
37.
Jin
,
Y.
,
Uth
,
M. F.
, and
Kuznetsov
,
A. V.
,
2015
, “
Numerical Investigation of the Possibility of Macroscopic Turbulence in Porous Media: A Direct Numerical Simulation Study
,”
J. Fluid Mech.
,
766
, pp.
76
103
.
38.
Uth
,
M. F.
,
Jin
,
Y.
, and
Kuznetsov
,
A. V.
,
2016
, “
A Direct Numerical Simulation Study on the Possibility of Macroscopic Turbulence in Porous Media: Effects of Different Solid Matrix Geometries, Solid Boundaries, and Two Porosity Scales
,”
Phys. Fluids
,
28
(
6
), p.
065101
.
39.
Klinkenberg
,
L. J.
,
1941
, “
The Permeability of Porous Media to Liquids and Gases
,”
Drilling and Productions Practices
,
American Petroleum Institute
,
New York
.
40.
Scheidegger
,
A. E.
,
1972
,
The Physics of Flow Through Porous Media
, 3rd ed.,
University of Toronto Press
,
Toronto, ON, Canada
.
41.
Peng
,
Y.
,
2005
, “
Thermal Lattice Boltzmann Two-Phase Flow Model for Fluid Dynamics
,”
Ph.D. thesis
, University of Pittsburgh, Pittsburgh, PA.
42.
Cercignani
,
C.
,
1988
,
The Boltzmann Equations and Its Applications
,
Springer-Verlag
,
New York
.
43.
He
,
X. Y.
,
Chen
,
S. Y.
, and
Doolen
,
G. D.
,
1998
, “
A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit
,”
J. Comput. Phys.
,
146
(
1
), pp.
282
300
.
44.
Succi
,
S.
,
2001
,
The Lattice Boltzmann Equation: for Fluid Dynamics and Beyond
,
Oxford University Press
, Oxford, UK.
45.
Succi
,
S.
,
2002
, “
Mesoscopic Modeling of Slip Motion at Fluid-Solid Interfaces With Heterogeneous Catalysis
,”
J. Phys. Rev. Lett.
,
89
(
6
), p.
064502
.
46.
Lim
,
C. Y.
,
Shu
,
C.
,
Niu
,
X. D.
, and
Chew
,
Y. T.
,
2002
, “
Application of Lattice Boltzmann Method to Simulate Microchannel Flows
,”
J. Phys. Fluids.
,
14
(
7
), pp.
2299
2308
.
47.
Verhaeghe
,
F.
,
Luo
,
L. S.
, and
Blanpain
,
B.
,
2009
, “
Lattice Boltzmann Modeling of Microchannel Flow in Slip Flow Regime
,”
J. Comput. Phys.
,
228
(
1
), pp.
147
157
.
48.
Pan
,
C.
,
Luo
,
L. S.
, and
Miller
,
C. T.
,
2006
, “
An Evaluation of Lattice Boltzmann Schemes for Porous Medium Flow Simulation
,”
Comput. Fluids
,
35
(8–9), pp.
898
909
.
49.
Tang
,
G. H.
,
Tao
,
W. Q.
, and
He
,
Y. L.
,
2005
, “
Gas Slippage Effect on Microscale Porous Flow Using the Lattice Boltzmann Method
,”
Phys. Rev. E
,
72
(
5
), p.
056301
.
50.
Ergun
,
S.
,
1952
, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Prog.
,
48
(2), pp. 89–94.
51.
Bear
,
J.
,
1972
,
Dynamic of Fluids in Porous Media
,
Elsevier
,
Amsterdam, The Netherlands
.
52.
Niu
,
X. D.
,
Chew
,
Y. T.
, and
Shu
,
C.
,
2004
, “
A Lattice Boltzmann BGK Model for Simulation of Micro Flows
,”
Europhys. Lett.
,
67
(
4
), p.
600
.
53.
Niu
,
X. D.
,
Shu
,
C.
, and
Chew
,
Y. T.
,
2007
, “
A Thermal Lattice Boltzmann Model With Diffuse Scattering Boundary Condition for Micro Thermal Flows
,”
Comput. Fluids
,
36
(
2
), pp.
273
281
.
54.
Hadjiconstantinou
,
N. G.
, and
Simek
,
O.
,
2002
, “
Constant-Wall-Temperature Nusselt Number in Micro and Nano-Channels
,”
ASME J. Heat Transfer
,
124
(
2
), pp.
356
364
.
You do not currently have access to this content.