In this note, two aspects in the theory of heat conduction model with memory-dependent derivatives (MDDs) are studied. First, the discontinuity solutions of the memory-dependent generalized thermoelasticity model are analyzed. The fundamental equations of the problem are expressed in the form of a vector matrix differential equation. Applying modal decomposition technique, the vector matrix differential equation is solved by eigenvalue approach in Laplace transform domain. In order to obtain the solution in the physical domain, an approximate method by using asymptotic expansion is applied for short-time domain and analyzed the nature of the waves and discontinuity of the solutions. Second, a suitable Lyapunov function, which will be an important tool to study several qualitative properties, is proposed.

References

1.
Biot
,
M.
,
1956
, “
Thermoelsticity and Irreversible Thermodynamics
,”
J. Appl. Phys.
,
27
(
3
), pp.
240
253
.
2.
Cattaneo
,
C.
,
1958
, “
Sur une forme de l'equation de la chaleur eliminant le Paradoxe d'ure propagation instantaneee
,”
C. R. Acad. Sci.
,
2
(
47
), pp.
431
433
.
3.
Lord
,
H.
, and
Shulman
,
Y.
,
1967
, “
A Generalized Dynamic Theory of Thermoelasticity
,”
J. Mech. Phys. Solids
,
15
(
5
), pp.
299
309
.
4.
Green
,
A. E.
, and
Lindsay
,
K. A.
,
1972
, “
Thermoelasticity
,”
J. Elasticity
,
2
(
1
), pp.
1
7
.
5.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1991
, “
A Re-Examination of the Basic Postulates of Thermomechanics
,”
Proc. R. Soc. London, Ser. A
,
432
(
1885
), pp.
171
194
.
6.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1992
, “
On Undamped Heat Waves in an Elastic Solid
,”
J. Therm. Stresses
,
15
(
2
), pp.
253
264
.
7.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1993
, “
Thermoelasticity Without Energy Dissipation
,”
J. Elasticity
,
31
(
3
), pp.
189
208
.
8.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1995
, “
A Unified Procedure for Construction of Theories of Deformable Media—I: Classical Continuum Physics
,”
Proc. R. Soc. London, Ser. A
,
448
(
1934
), pp.
335
356
.
9.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1995
, “
A Unified Procedure for Construction of Theories of Deformable Media—II: Generalized Continua
,”
Proc. R. Soc. London, Ser. A
,
448
(
1934
), pp.
357
377
.
10.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1995
, “
A Unified Procedure for Construction of Theories of Deformable Media—III: Mixture of Interacting Continua
,”
Proc. R. Soc. London, Ser. A
,
448
(
1934
), pp.
379
388
.
11.
Wang
,
J. L.
, and
Li
,
H. F.
,
2011
, “
Surpassing the Fractional Derivative: Concept of the Memory Dependent Derivative
,”
Comput. Math. Appl.
,
62
(
3
), pp.
1562
1567
.
12.
Shaw
,
S.
, and
Mukhopadhyay
,
B.
,
2011
, “
Generalized Theory of Micropolar Fractional Ordered Thermo-Elasticity With Two-Temperature
,”
Int. J. Appl. Math. Mech.
,
7
(19), pp.
32
48
.
13.
Sur
,
A.
, and
Kanoria
,
M.
,
2012
, “
Fractional Order Two-Temperature Thermoelasticity With Finite Wave Speed
,”
Acta Mech.
,
223
(
12
), pp.
2685
2701
.
14.
Yu
,
Y. J.
,
Tian
,
X. G.
, and
Lu
,
T. J.
,
2013
, “
On Fractional Order Generalized Thermoelasticity With Micromodeling
,”
Acta Mech.
,
224
(
12
), pp.
2911
2927
.
15.
Shaw
,
S.
, and
Mukhopadhyay
,
B.
,
2016
, “
Theory of Fractional Ordered Thermoelastic Diffusion
,”
Eur. Phys. J. Plus
,
131
(
6
), pp.
1
10
.
16.
Sabatier
,
J.
,
Agrawal
,
O. P.
, and
Tenreiro Machado
,
J. A.
, eds.,
2007
,
Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering
,
Springer
,
Dordrecht, The Netherlands
.
17.
Hilfer
,
R.
,
2000
,
Application of Fractional Calculus to Physics
,
World Scientific
,
Singapore
.
18.
Atanacković
,
T. M.
,
Pilipović
,
S.
,
Stanković
,
B.
, and
Zorica
,
D.
,
2014
,
Fractional Calculus With Application in Mechanics
,
Wiley
,
London
.
19.
Diethelm
,
K.
,
2010
,
Analysis of Fractional Differential Equation: An Application Oriented Exposition Using Differential Operators of Caputo Type
,
Springer-Verlag
,
Berlin
.
20.
Podio-Guidugli
,
P.
,
2009
, “
A Virtual Power Format for Thermomechanics
,”
Continuum Mech. Thermodyn.
,
20
(
8
), pp.
479
487
.
21.
Coleman
,
B. D.
, and
Gurtin
,
M. E.
,
1967
, “
Equipresence and Constitutive Equations for Rigid Heat Conductors
,”
Z. Angew. Math. Phys.
,
18
(
2
), pp.
199
208
.
22.
Gurtin
,
M. E.
, and
Pipkin
,
A. C.
,
1968
, “
A General Theory of Heat Conduction With Finite Wave Speeds
,”
Arch. Ration. Mech. Anal.
,
31
(
2
), pp.
113
126
.
23.
Sherief
,
H. H.
,
EI-Sayed
,
A. M. A.
, and
EI-Latief
,
A. M. A.
,
2010
, “
Fractional Order theory of thermoelasticity
,”
Int. J. Solids Struct.
,
47
(
2
), pp.
269
275
.
24.
Youssef
,
H. H.
,
2010
, “
Theory of Fractional Order Generalized Thermoelasticity
,”
ASME J. Heat Transfer
,
132
(
6
), p.
061301
.
25.
Ezzat
,
M. A.
, and
Fayik
,
M. A.
,
2011
, “
Fractional Order Theory of Thermoelastic Diffusion
,”
J. Therm. Stresses
,
34
(
8
), pp.
851
872
.
26.
Yu
,
Y. J.
,
Hu
,
W.
, and
Tian
,
X. G.
,
2014
, “
A Novel Generalized Thermoelasticity Model Based on Memory Dependent Derivatives
,”
Int. J. Eng. Sci.
,
81
, pp.
123
134
.
27.
Das
,
N. C.
, and
Bhaktal
,
P. C.
,
1985
, “
Eigen Function Expansion Method to the Solution of Simultaneous Equations and Its Applications in Mechanics
,”
Mech. Res. Commun.
,
12
(
1
), pp.
19
29
.
28.
Baksi
,
A.
,
Bera
,
R. K.
, and
Debnath
,
L.
,
2004
, “
Eigen Value Approach to Study the Effect of Rotation and Relaxation Time in Two Dimensional Problems of Generalized Thermoelasticity
,”
Int. J. Eng. Sci.
,
42
(15–16), pp.
1573
1585
.
29.
Thomas
,
T. Y.
,
1961
,
Plastic Flow in Solids
,
Academic Press
,
New York
.
You do not currently have access to this content.