Design of effective microcooling systems to address the challenges of ever increasing heat flux from microdevices requires deep examination of real-time problems and has been tackled in depth. The most common (and apparently misleading) assumption while designing microcooling systems is that the heat flux generated by the device is uniform, but the reality is far from this. Detailed simulations have been performed by considering nonuniform heat load employing the configurations U, I, and Z for parallel microchannel systems with water and nanofluids as the coolants. An Intel® Core i7-4770 3.40 GHz quad core processor has been mimicked using heat load data retrieved from a real microprocessor with nonuniform core activity. This study clearly demonstrates that there is a nonuniform thermal load induced temperature maldistribution along with the already existent flow maldistribution induced temperature maldistribution. The suitable configuration(s) for maximum possible overall heat removal for a hot zone while maximizing the uniformity of cooling have been tabulated. An Eulerian–Lagrangian model of the nanofluids shows that such “smart” coolants not only reduce the hot spot core temperature but also the hot spot core region and thermal slip mechanisms of Brownian diffusion and thermophoresis are at the crux of this. The present work conclusively shows that high flow maldistribution leads to high thermal maldistribution, as the common prevalent notion is no longer valid and existing maldistribution can be effectively utilized to tackle specific hot spot location, making the present study important to the field.

References

1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.
2.
Sasaki
,
S.
, and
Kishimoto
,
T.
,
1986
, “
Optimal Structure for Microgrooved Cooling Fin for High-Power LSI Devices
,”
Electron. Lett.
,
22
(
25
), pp.
1332
1334
.
3.
Kishimoto
,
T.
, and
Sasaki
,
S.
,
1987
, “
Cooling Characteristics of Diamond-Shaped Interrupted Cooling Fin for High-Power LSI Devices
,”
Electron. Lett.
,
23
(
9
), pp.
456
457
.
4.
Peng
,
X. F.
,
Peterson
,
G. P.
, and
Wang
,
B. X.
,
1994
, “
Frictional Flow Characteristics of Water Flowing Through Rectangular Microchannels
,”
Exp. Heat Transfer
,
7
(
4
), pp.
249
264
.
5.
Judy
,
J.
,
Maynes
,
D.
, and
Webb
,
B. W.
,
2002
, “
Characterization of Frictional Pressure Drop for Liquid Flows Through Microchannels
,”
Int. J. Heat Mass Transfer
,
45
(
17
), pp.
3477
3489
.
6.
Kandlikar
,
S. G.
,
2012
, “
History, Advances, and Challenges in Liquid Flow and Flow Boiling Heat Transfer in Microchannels: A Critical Review
,”
ASME J. Heat Transfer
,
134
(
3
), p.
034001
.
7.
Kandlikar
,
S. G.
,
2005
, “
High Flux Heat Removal With Microchannels—A Roadmap of Challenges and Opportunities
,”
Heat Transfer Eng.
,
26
(
8
), pp.
5
14
.
8.
Kumaraguruparan
,
G.
,
ManikandaKumaran
,
R.
,
Sornakumar
,
T.
, and
Sundararajan
,
T.
,
2011
, “
A Numerical and Experimental Investigation of Flow Maldistribution in a Micro-Channel Heat Sink
,”
Int. Commun. Heat Mass Transfer
,
38
(
10
), pp.
1349
1353
.
9.
Siva
,
M. V.
,
Pattamatta
,
A.
, and
Das
,
S. K.
,
2014
., “
Effect of Flow Maldistribution on the Thermal Performance of Parallel Microchannel Cooling Systems
,”
Int. J. Heat Mass Transfer
,
73
, pp.
424
428
.
10.
Maganti
,
L. S.
,
Dhar
,
P.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2016
, “
Particle and Thermohydraulic Maldistribution of Nanofluids in Parallel Microchannel Systems
,”
Microfluid. Nanofluid.
,
20
(
109
), pp.
1
16
.
11.
Siva
,
M. V.
,
Pattamatta
,
A.
, and
Das
,
S. K.
,
2014
, “
Investigation on Flow Maldistribution in Parallel Microchannel Systems for Integrated Microelectronic Device Cooling
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
4
(
3
), pp.
438
450
.
12.
Hetsroni
,
G.
,
Mosyak
,
A.
, and
Segal
,
Z.
,
2011
, “
Nonuniform Temperature Distribution in Electronic Devices Cooled by Flow in Parallel Microchannels
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
24
(
1
), pp.
16
23
.
13.
Nielsen
,
K. K.
,
Engelbrecht
,
K.
,
Christensen
,
D. V.
,
Jensen
,
J. B.
,
Smith
,
A.
, and
Bahl
,
C. R. H.
,
2012
, “
Degradation of the Performance of Microchannel Heat Exchangers Due to Flow Maldistribution
,”
Appl. Therm. Eng.
,
40
, pp.
236
247
.
14.
Li
,
J.
, and
Kleinstreuer
,
C.
,
2008
, “
Thermal Performance of Nanofluid Flow in Microchannels
,”
Int. J. Heat Fluid Flow
,
29
(
4
), pp.
1221
1232
.
15.
Escher
,
W.
,
Brunschwiler
,
T.
,
Shalkevich
,
N.
,
Shalkevich
,
A.
,
Burgi
,
T.
,
Michel
,
B.
, and
Poulikakos
,
D.
,
2011
, “
On the Cooling of Electronics With Nanofluids
,”
ASME J. Heat Transfer
,
133
(
5
), p.
051401
.
16.
Lee
,
J.
, and
Mudawar
,
I.
,
2007
, “
Assessment of the Effectiveness of Nanofluids for Single-Phase and Two-Phase Heat Transfer in Micro-Channels
,”
Int. J. Heat Mass Transfer
,
50
(
3
), pp.
452
463
.
17.
Maganti
,
L. S.
,
Dhar
,
P.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2015
, “
Thermally ‘Smart’ Characteristics of Nanofluids in Parallel Microchannel Systems to Mitigate Hot Spots in MEMS
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
6
(
12
), pp.
1834
1846
.
18.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
,
2003
, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
,
125
(
4
), pp.
567
574
.
19.
Cho
,
E. S.
,
Choi
,
J. W.
,
Yoon
,
J. S.
, and
Kim
,
M. S.
,
2010
, “
Experimental Study on Microchannel Heat Sinks Considering Mass Flow Distribution With Non-Uniform Heat Flux Conditions
,”
Int. J. Heat Mass Transfer
,
53
, pp.
2159
2168
.
20.
Sharma
,
C. S.
,
Schlottig
,
G.
,
Brunschwiler
,
T.
,
Tiwari
,
M. K.
,
Michel
,
B.
, and
Poulikakos
,
D.
,
2015
, “
A Novel Method of Energy Efficient Hotspot-Targeted Embedded Liquid Cooling for Electronics: An Experimental Study
,”
Int. J. Heat Mass Transfer
,
88
, pp.
684
694
.
21.
Sharma
,
C. S.
,
Tiwari
,
M. K.
, and
Poulikakos
,
D.
,
2016
, “
A Simplified Approach to Hotspot Alleviation in Microprocessors
,”
Appl. Therm. Eng.
,
93
, pp.
1314
1323
.
You do not currently have access to this content.