A comprehensive analysis and optimization of a three-dimensional integrated circuit (3D IC) structure and its thermophysical attributes are presented in this work. The thermophysical and geometrical attributes studied in this paper include the die, device layer, heat sink, and heat spreader, which are critical structures within a 3D IC. The effect of the power density of the device layer which is the source of heat generation within the chip as well as the through silicon vias (TSV) and microbumps is also considered in our investigation. The thermophysical and geometrical parameters that have a significant impact on the thermal signature of the 3D IC as well as those that have an insignificant impact were established. The comprehensive analysis of different geometrical and thermophysical attributes can guide the design and optimization of a 3D IC structure and decrease the cost.

References

1.
Li
,
Y.
,
Lee
,
B.
,
Brooks
,
D.
,
Hu
,
Z.
, and
Skadron
,
K.
,
2006
, “
CMP Design Space Exploration Subject to Physical Constraints
,”
The Twelfth International Symposium on High-Performance Computer Architecture, Feb. 11–15
, pp.
17
28
.
2.
Jacob
,
P.
,
Zia
,
A.
,
Erdogan
,
O.
,
Belemjian
,
P. M.
,
Kim
,
J.-W.
,
Chu
,
M.
,
Kraft
,
R. P.
,
McDonald
,
J. F.
, and
Bernstein
,
K.
,
2009
, “
Mitigating Memory Wall Effects in High-Clock-Rate and Multicore CMOS 3-D Processor Memory Stacks
,”
Proc. IEEE
,
97
(
1
), pp.
108
122
.
3.
Tong
,
X. C.
,
2011
, Advanced Materials for Thermal Management of Electronic Packaging (Springer Series in Advanced Microelectronics), Vol.
30
,
Springer
,
New York
, pp.
1
58
.
4.
Sri-Jayantha
,
S. M.
,
McVicker
,
G.
,
Bernstein
,
K.
, and
Knickerbocker
,
J. U.
,
2008
, “
Thermomechanical Modeling of 3D Electronic Packages
,”
IBM J. Res. Dev.
,
52
(
6
), pp.
623
634
.
5.
Huang
,
X.
,
Yu
,
H.
, and
Zhang
,
W.
,
2011
, “
NEMS Based Thermal Management for 3D Many-Core System
,”
International Symposium on Nanoscale Architectures (NANOARCH), IEEE/ACM
, pp.
218
223
.
6.
Koo
,
J. M.
,
Im
,
S.
,
Jiang
,
L.
, and
Goodson
,
K. E.
,
2005
, “
Integrated Microchannel Cooling for Three-Dimensional Electronic Circuit Architectures
,”
ASME J. Heat Transfer
,
127
(
1
), pp.
49
58
.
7.
Tavakkoli
,
F.
,
Ebrahimi
,
S.
,
Wang
,
S.
, and
Vafai
,
K.
,
2016
, “
Analysis of Critical Thermal Issues in 3D Integrated Circuits
,”
Int. J. of Heat and Mass Transfer
,
97
(
1
), pp.
337
352
.
8.
Liu
,
Z.
,
Tan
,
S. X.-D.
,
Wang
,
H.
,
Swarup
,
S.
, and
Gupta
,
A.
,
2013
, “
Compact Nonlinear Thermal Modeling of Packaged Integrated Systems
,”
18th Asia and South Pacific Design Automation Conference (ASP-DAC)
, pp.
157
162
.
9.
Vaddina
,
K. R.
,
Amir-Mohammad
,
R.
,
Latif
,
K.
,
Liljeberg
,
P.
, and
Plosila
,
J.
,
2012
, “
Thermal Modeling and Analysis of Advanced 3D Stacked Structures
,”
Procedia Eng.
,
30
, pp.
248
257
.
10.
Chevalier
,
P. W.
,
Abraham
,
J. P.
, and
Sparrow
,
E. M.
,
2006
, “
The Design of Cold Plates for the Thermal Management of Electronic Equipment
,”
Heat Transfer Eng.
,
27
(
7
), pp.
6
16
.
11.
Sparrow
,
E. M.
,
Abraham
,
J. P.
, and
Chevalier
,
P. W.
,
2005
, “
A DOS-Enhanced Numerical Simulation of Heat Transfer and Fluid Flow Through an Array of Offset Fins With Conjugate Heating in the Bounding Solid
,”
ASME J. Heat Transfer
,
127
(
1
), pp.
27
33
.
12.
Sparrow
,
E. M.
, and
Abraham
,
P.
,
2002
, “
Heat Transfer Coefficients and Other Performance Parameters for Variously Positioned and Supported Thermal Loads in Ovens With/Without Water-Filled or Empty Blockages
,”
Int. J. Heat Mass Transfer
,
45
(
17
), pp.
3597
3607
.
13.
Kim
,
S. Y.
, and
Kuznetsov
,
A. V.
,
2003
, “
Optimization of Pin-Fin Heat Sinks Using Anisotropic Local Thermal Nonequilibrium Porous Model in a Jet Impinging Channel
,”
Numer. Heat Transfer, Part A
,
44
(
8
), pp.
771
787
.
14.
Sparrow
,
E. M.
,
Abraham
,
J. P.
, and
Tong
,
J. C. K.
,
2004
, “
Archival Correlations for Average Heat Transfer Coefficients for Non-Circular and Circular Cylinders and for Spheres in Crossflow
,”
Int. J. Heat Mass Transfer
,
47
(
24
), pp.
5285
5296
.
15.
Kim
,
S. Y.
,
Koo
,
J.-M.
, and
Kuznetsov
,
A. V.
,
2001
, “
Effect of Anisotropy in Permeability and Effective Thermal Conductivity on Thermal Performance of an Aluminum Foam Heat Sink
,”
Numer. Heat Transfer, Part A
,
40
(
1
), pp.
21
36
.
16.
Tien
,
C. L.
, and
Vafai
,
K.
,
1979
, “
Statistical Bounds for the Effective Thermal Conductivity of Microsphere and Fibrous Insulation
,”
AIAA Prog. Ser.
,
65
, pp.
135
148
.
17.
Young
,
T. J.
, and
Vafai
,
K.
,
1998
, “
Convective Cooling of a Heated Obstacle in a Channel
,”
Int. J. Heat Mass Transfer
,
41
(
20
), pp.
3131
3148
.
You do not currently have access to this content.