In the present work, a computational fluid dynamic (CFD) simulation has been performed to investigate single and two-phase vortex tube. Air in compressed form and partially condensed phase are used as working fluid, respectively. Simulation has been carried out using commercial CFD software package fluent 6.3.26. A detailed study has been performed to generate the profiles of velocity, pressure, and pathlines. These profiles provide an insight on how the process of energy separation as well as the flow field in the vortex tube gets affected on introduction of a liquid phase. The result shows that in case of cryogenic vortex tube, the flow reversal takes place closer to wall due to presence of a very thin wall adhering liquid film, while, in single-phase flow vortex tube, flow reversal is observed at the central portion. The model also predicts that presence of recirculation zone near warm end diminishes the refrigeration effect of vortex tube for two-phase flow.

References

1.
Eiamsa-ard
,
S.
, and
Promvonge
,
P.
,
2007
, “
Numerical Investigation of the Thermal Separation in a Ranque–Hilsch Vortex Tube
,”
Int. J. Heat Mass Transfer
,
50
(5–6), pp.
821
832
.
2.
Ranque
,
G. J.
,
1933
, “
Experiments on Expansion in a Vortex With Simultaneous Exhaust of Hot Air and Cold Air
,”
J. Phys. Radium (Paris)
,
115
(4), pp.
112
115
.
3.
Hilsch
,
R.
,
1947
, “
The Use of Expansion of Gases in a Centrifugal Field as a Cooling Process
,”
Rev. Sci. Instrum.
,
18
(
2
), pp.
108
113
.
4.
Deissler
,
R. G.
, and
Perlmutter
,
M.
,
1960
, “
Analysis of the Flow and Energy Separation in a Vortex Tube
,”
Int. J. Heat Mass Transfer
,
1
(2–3), pp.
173
191
.
5.
Kurosaka
,
M.
,
1982
, “
Acoustic Streaming in Swirl Flow and the Ranque–Hilsch (Vortex-Tube) Effect
,”
J. Fluid Mech.
,
124
, pp.
139
172
.
6.
Ahlborn
,
B.
,
Keller
,
J. U.
,
Staudt
,
R.
,
Treitz
,
G.
, and
Rebhan
,
E.
,
1994
, “
Limits of Temperature Separation in a Vortex Tube
,”
J. Phys. D: Appl. Phys.
,
27
(
3
), pp.
480
488
.
7.
Cockerill
,
T. T.
,
1995
, “
Thermodynamics and Fluid Mechanics of a Ranque Hilsch Vortex Tube
,” Masters thesis, University of Cambridge, Cambridge, UK.
8.
Frohlingsdorf
,
W.
, and
Unger
,
H.
,
1999
, “
Numerical Investigations of the Compressible Flow and the Energy Separation in Ranque–Hilsch Vortex Tube
,”
Int. J. Heat Mass Transfer
,
42
(
3
), pp.
415
422
.
9.
Behera
,
U.
,
Paul
,
P. J.
,
Kasthurirengan
,
S.
,
Karunanithi
,
R.
,
Ram
,
S. N.
,
Dinesh
,
K.
, and
Jacob
,
S.
,
2005
, “
CFD Analysis and Experimental Investigations Towards Optimizing the Parameters of Ranque–Hilsch Vortex Tube
,”
Int. J. Heat Mass Transfer
,
48
(
10
), pp.
1961
1973
.
10.
Aljuwayhel
,
N. F.
,
Nellis
,
G. F.
, and
Klein
,
S. A.
,
2005
, “
Parametric and Internal Study of the Vortex Tube Using a CFD Model
,”
Int. J. Refrig.
,
28
(
3
), pp.
442
450
.
11.
Skye
,
H. M.
,
Nellis
,
G. F.
, and
Klein
,
S. A.
,
2006
, “
Comparison of CFD Analysis to Empirical Data in a Commercial Vortex Tube
,”
Int. J. Refrig.
,
29
(
1
), pp.
71
80
.
12.
Farouk
,
T.
, and
Farouk
,
B.
,
2007
, “
Large Eddy Simulations of the Flow Field and Temperature Separation in the Ranque–Hilsch Vortex Tube
,”
Int. J. Heat Mass Transfer
,
50
(23–24), pp.
4724
4735
.
13.
Behera
,
U.
,
Paul
,
P. J.
,
Dinesh
,
K.
, and
Jacob
,
S.
,
2008
, “
Numerical Investigations on Flow Behaviour and Energy Separation in Ranque–Hilsch Vortex Tube
,”
Int. J. Heat Mass Transfer
,
51
(25–26), pp.
6077
6089
.
14.
Farouk
,
T.
,
Farouk
,
B.
, and
Gutsol
,
A.
,
2009
, “
Simulation of Gas Species and Temperature Separation in the Counter-Flow Ranque–Hilsch Vortex Tube Using the Large Eddy Simulation Technique
,”
Int. J. Heat Mass Transfer
,
52
(13–14), pp.
3320
3333
.
15.
Secchiaroli
,
A.
,
Ricci
,
R.
,
Montelpare
,
S.
, and
Alessandro
,
V. D.
,
2009
, “
Numerical Simulation of Turbulent Flow in a Ranque-Hilsch Vortex Tube
,”
Int. J. Heat Mass Transfer
,
52
(23–24), pp.
5496
5511
.
16.
Alireza
,
N. H.
, and
Rahim
,
S.
,
2009
, “
Numerical Three Dimensional Analysis of the Mechanism of Flow and Heat Transfer in Vortex Tube
,”
Therm. Sci.
,
13
(4), pp.
183
196
.
17.
Baghdad
,
M.
,
Ouadha
,
A.
,
Imine
,
O.
, and
Addad
,
Y.
,
2011
, “
Numerical Study of Energy Separation in a Vortex Tube With Different RANS Models
,”
Int. J. Therm. Sci.
,
50
(
12
), pp.
2377
2385
.
18.
Rafiee
,
S. E.
, and
Rahimi
,
M.
,
2013
, “
Experimental Study and Three-Dimensional (3D) Computational Fluid Dynamics (CFD) Analysis on the Effect of the Convergence Ratio, Pressure Inlet and Number of Nozzle Intake on Vortex Tube Performance Validation and CFD Optimization
,”
Energy
,
63
, pp.
195
204
.
19.
Rafiee
,
S. E.
, and
Sadeghiazad
,
M. M.
,
2014
, “
Three-Dimensional and Experimental Investigation on the Effect of Cone Length of Throttle Valve on Thermal Performance of a Vortex Tube Using k–ε Turbulence Model
,”
Appl. Therm. Eng.
,
66
(1–2), pp.
65
74
.
20.
Bovand
,
M.
,
Valipour
,
M. S.
,
Dincer
,
K.
, and
Tamayol
,
A.
,
2014
, “
Numerical Analysis of the Curvature Effects on Ranquee Hilsch Vortex Tube Refrigerators
,”
Appl. Therm. Eng.
,
65
(1–2), pp.
176
183
.
21.
Jacob
,
S.
,
Kasthurirengan
,
S.
,
Karunanithi
,
R.
, and
Jagadish
,
T.
,
2000
, “
Oxygen Separation Using Cruogenic Vortex Tube
,”
Adv. Cryogenic Eng.
,
2000
(1), pp.
1771
1777
.
22.
Crocker
,
A. M.
,
White
,
S. M.
, and
Bremer
,
F.
, Jr.
,
2003
, “
Experimental Results of a Vortex Tube Air Separator for Advanced Space Transportation
,”
AIAA
Paper No. 2003-4451.
23.
Fluent
,
2006
, “
Fluent 6.3 User's Guide
,” Fluent, Lebanon, PA.
24.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.
25.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
(Series on Computational Methods in Mechanics and Thermal Science), Hemisphere Publishing Corporation,
Washington, DC
.
26.
Issa
,
R. I.
,
1986
, “
Solution of the Implicitly Discretized Fluid Flow Equations by Operator Splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
.
You do not currently have access to this content.