Free convection air cooling from a vertically placed heat sink is enhanced by upward concurrent pulsated air flow generated by mesoscale synthetic jets. The cooling enhancement is experimentally studied. An enhancement factor is introduced and defined as the ratio of convection heat transfer coefficients for jet-on (enhanced convection) to jet-off (natural convection) cooling conditions. To obtain the two coefficients, heat transfer by radiation is excluded. A high-resolution infrared (IR) camera is used to capture detailed local temperature distribution on the heat sink surface under both cooling conditions. Analysis is carried out to obtain local convection heat transfer coefficients based on measured local surface temperatures. The enhancement of convectional cooling by synthetic jets can be then quantified both locally and globally for the entire heat sink. Two categories of thermal tests are conducted. First, tests are conducted with a single jet to investigate the effects of jet placement and orifice size on cooling enhancement, while multiple jets are tested to understand how cooling performance changes with the number of jets. It is found that the cooling enhancement is considerably sensitive to jet placement. Jet flow directly blowing on fins provides more significant enhancement than blowing through the channel between fins. When using one jet, the enhancement ranges from 1.6 to 1.9 times. When multiple jets are used, the heat transfer enhancement increases from 3.3 times for using three jets to 4.8 times for using five jets. However, for practical thermal designs, increasing the number of jets increases the power consumption. Hence, a new parameter, “jet impact factor (JIF),” is defined to quantify the enhancement contribution per jet. JIF is found to change with the number of jets. For example, the four-jet configuration shows higher JIF due to higher contribution per jet than both three-jet and five-jet configurations.

References

1.
Açikalin
,
T.
,
Sauciuc
,
I.
, and
Garimella
,
S. V.
,
2005
, “
Piezoelectric Actuators for Low-Form-Factor Electronics Cooling
,”
ASME
Paper No. IPACK2005-73288.
2.
Go
,
D.
,
Garimella
,
S. V.
,
Fisher
,
T.
, and
Mongia
,
R.
,
2007
, “
Ionic Winds for Locally Enhanced Cooling
,”
J. Appl. Phys.
,
102
(
5
), p.
053302
.
3.
Acikalin
,
T.
,
Wait
,
S. M.
,
Garimella
,
S. V.
, and
Raman
,
A.
,
2004
, “
Experimental Investigation of the Thermal Performance of Piezoelectric Fans
,”
Heat Transfer Eng.
,
25
(
1
), pp.
4
14
.
4.
Walsh
,
E.
,
Walsh
,
P.
,
Grimes
,
R.
, and
Egan
,
V.
,
2008
, “
Thermal Management of Low Profile Electronic Equipment Using Radial Fans and Heat Sinks
,”
ASME J. Heat Transfer
,
130
(
12
), p.
125001
.
5.
Holman
,
R.
,
Utturkar
,
Y.
,
Mittal
,
R.
,
Smith
,
B. L.
, and
Cattafesta
,
L.
,
2005
, “
Formation Criterion for Synthetic Jets
,”
AIAA J.
,
43
(
10
), pp.
2110
2116
.
6.
Huang
,
L.
,
2014
, “
Synthetic Jet Flow and Heat Transfer for Electronics Cooling
,” Ph.D. dissertation, University of Minnesota, Minneapolis, MN.
7.
Mittal
,
R.
, and
Rampunggoon
,
P.
,
2002
, “
On Virtual Aero-Shaping Effect of Synthetic Jets
,”
Phys. Fluids
,
14
(
4
), pp.
1533
1536
.
8.
Amitay
,
M.
,
Smith
,
D. R.
,
Kibens
,
V.
,
Parekh
,
D. E.
, and
Glezer
,
A.
,
2001
, “
Aerodynamic Flow Control Over an Unconventional Airfoil Using Synthetic Jet Actuators
,”
AIAA J.
,
39
(
3
), pp.
361
370
.
9.
Lee
,
C. Y.
, and
Glodstein
,
D. B.
,
2001
, “
DNS of Micro Jets for Turbulent Boundary Layer Control
,”
AIAA
Paper No. 2001-1013.
10.
Gutmark
,
E.
,
Yassour
,
Y.
, and
Wolfshtein
,
M.
,
1982
, “
Acoustic Enhancement of Heat Transfer in Plane Channels
,”
7th International Heat Transfer Conference
,
Munich, Germany
, Sept. 6–10, pp.
441
445
.
11.
Pavlova
,
A.
, and
Amitay
,
M.
,
2006
, “
Electronic Cooling Using Synthetic Jet Impingement
,”
ASME J. Heat Transfer
,
128
(
9
), pp.
897
907
.
12.
Arik
,
M.
,
Sharma
,
R.
,
Lustbader
,
J.
, and
He
,
X.
,
2013
, “
Steady and Unsteady Air Impingement Heat Transfer for Electronics Cooling Applications
,”
ASME J. Heat Transfer
,
135
(
11
), p.
111009
.
13.
Arik
,
M.
,
2008
, “
Local Heat Transfer Coefficients of a High-Frequency Synthetic Jet During Impingement Cooling Over Flat Surfaces
,”
Heat Transfer Eng.
,
29
(
9
), pp.
763
773
.
14.
Chaudhari
,
M.
,
Puranik
,
B.
, and
Agrawal
,
A.
,
2010
, “
Effect of Orifice Shape in Synthetic Jet Based Impingement Cooling
,”
Exp. Therm. Fluid Sci.
,
34
(
2
), pp.
246
256
.
15.
Persoons
,
T.
,
McGuinn
,
A.
, and
Murray
,
D. B.
,
2011
, “
A General Correlation for the Stagnation Point Nusselt Number of an Axisymmetric Impinging Synthetic Jet
,”
Int. J. Heat Mass Transfer
,
54
(
17
), pp.
3900
3908
.
16.
Arik
,
M.
, and
Icoz
,
T.
,
2012
, “
Predicting Heat Transfer From Unsteady Synthetic Jets
,”
ASME J. Heat Transfer
,
134
(
8
), p.
081901
.
17.
Utturkar
,
Y.
,
Arik
,
M.
,
Seeley
,
C.
, and
Gursoy
,
M.
,
2008
, “
An Experimental and Computational Heat Transfer Study of Pulsating Jets
,”
ASME J. Heat Transfer
,
130
(
6
), p.
062201
.
18.
Chandratilleke
,
T. T.
,
Jagannatha
,
D.
, and
Narayanaswamy
,
R.
,
2010
, “
Heat Transfer Enhancement in Microchannels With Cross-Flow Synthetic Jets
,”
Int. J. Therm. Sci.
,
49
(
3
), pp.
504
513
.
19.
Trávníček
,
Z.
,
Němcová
,
L.
,
Kordík
,
J.
,
Tesař
,
V.
, and
Kopecký
,
V.
,
2012
, “
Axisymmetric Impinging Jet Excited by a Synthetic Jet System
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
1279
1290
.
20.
Zhang
,
J. Z.
,
Gao
,
S.
, and
Tan
,
X. M.
,
2013
, “
Convective Heat Transfer on a Flat Plate Subjected to Normally Synthetic Jet and Horizontally Forced Flow
,”
Int. J. Heat Mass Transfer
,
57
(
1
), pp.
321
330
.
21.
Akdag
,
U.
,
Cetin
,
O.
,
Demiral
,
D.
, and
Ozkul
,
I.
,
2013
, “
Experimental Investigation of Convective Heat Transfer on a Flat Plate Subjected to a Transversely Synthetic Jet
,”
Int. Commun. Heat Mass Transfer
,
49
, pp.
96
103
.
22.
Arik
,
M.
,
Gerstler
,
B.
,
Li
,
R.
,
Whalen
,
B.
, and
Vanderploeg
,
B.
,
2014
, “
Chassis With Distributed Jet Cooling
,” U.S. Patent No. US8776871 B2.
23.
Arik
,
M.
,
Utturkar
,
Y.
, and
Gursoy
,
M.
,
2007
, “
Interaction of Synthetic Jet Cooling Performance With Gravity and Buoyancy Driven Flows
,”
ASME
Paper No. IPACK2007-33188.
24.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
, 7th ed.,
Wiley
,
New York
, p.
168
.
25.
Garg
,
J.
,
Arik
,
M.
,
Weaver
,
S.
, and
Saddoughi
,
S.
,
2004
, “
Micro Fluidic Jets for Thermal Management of Electronics
,”
ASME
Paper No. HT-FED2004-56782.
26.
Messiter
,
A. F.
, and
Liñán
,
A.
,
1976
, “
The Vertical Plate in Laminar Free Convection: Effects of Leading and Trailing Edges and Discontinuous Temperature
,”
Z. Angew. Math. Phys.
,
27
(
5
), pp.
633
651
.
27.
Kotapati
,
R. B.
, and
Mittal
,
R.
,
2005
, “
Time-Accurate Three-Dimensional Simulations of Synthetic Jets in Quiescent Air
,”
AIAA
Paper No. 2005-103.
28.
Holman
,
J. P.
,
1990
,
Heat Transfer
, 7th ed.,
McGraw-Hill
,
New York
, p.
367
.
29.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
You do not currently have access to this content.