Numerical solution is carried out to analyze the effect of nanoencapsulated phase change material (NEPCM) slurry on forced convection heat transfer of steady laminar flow past an isothermal square cylinder. The base fluid is water while the NEPCM particles material is n-octadecane with an average diameter of 100 nm. A parametric study was performed for different volume fraction of nanoparticles ranging from 0% to 30%, two melting temperature ranges, i.e., 10 K and 20 K, and different inlet Reynolds numbers ranging from 15 to 45. The governing equations of flow and energy are solved simultaneously using a finite volume method (FVM) on collocated grid arrangement. It was found that for both NEPCM slurry and pure water, local and average heat transfer coefficients increases with increasing Reynolds number. The results of heat transfer characteristics of slurry flow over the square cylinder showed remarkable enhancement relative to that of the base fluid. The enhancement intensifies for higher particle volume concentrations and higher Reynolds numbers. However, utilizing the slurry can cause higher shear stress on the wall due to higher viscosity of mixture compared to the pure water. The melting temperature range of NEPCM particles has slight effect on heat transfer, although with increasing volume fraction and Reynolds number, lower melting range leads to higher heat transfer coefficient.

References

1.
Kelkar
,
K. M.
, and
Patankar
,
S. V.
,
1992
, “
Numerical Prediction of Vortex Shedding Behind a Square Cylinder
,”
Int. J. Numer. Methods Fluids
,
14
(
3
), pp.
327
341
.10.1002/fld.1650140306
2.
Suzuki
,
K.
, and
Suzuki
,
H.
,
1994
, “
Unsteady Heat Transfer in a Channel Obstructed by an Immersed Body
,”
Annu. Rev. Heat Transfer
,
5
, pp.
177
206
.10.1615/AnnualRevHeatTransfer.v5.60
3.
Turki
,
S.
,
Abbassi
,
H.
, and
Ben Nasrallah
,
S.
,
2003
, “
Two-Dimensional Laminar Fluid Flow and Heat Transfer in a Channel With a Built-in Heated Square Cylinder
,”
Int. J. Therm. Sci.
,
42
(
12
), pp.
1105
1113
.10.1016/S1290-0729(03)00091-7
4.
Sharma
,
A.
, and
Eswaran
,
V.
,
2004
, “
Heat and Fluid Flow Across a Square Cylinder in the Two Dimensional Laminar Flow Regime
,”
Numer. Heat Transfer, Part A
,
45
(
3
), pp.
247
269
.10.1080/10407780490278562
5.
Dhiman
,
A. K.
,
Chhabra
,
R. P.
, and
Eswaran
,
V.
,
2005
, “
Flow and Heat Transfer Across a Confined Square Cylinder in the Steady flow Regime: Effect of Peclet Number
,”
Int. J. Heat Mass Transfer
,
48
(
21–22
), pp.
4598
4614
.10.1016/j.ijheatmasstransfer.2005.04.033
6.
Dhiman
,
A. K.
,
Chhabra
,
R. P.
, and
Eswaran
,
V.
,
2006
, “
Steady Flow of Power Law Fluids Across a Square Cylinder
,”
Chem. Eng. Res. Des.
,
84
(
4
), pp.
300
310
.10.1205/cherd05017
7.
Sahu
,
A. K.
,
Chhabra
,
R. P.
, and
Eswaran
,
V.
,
2009
, “
Effects of Reynolds and Prandtl numbers on Heat Transfer From a Square Cylinder in the Unsteady Flow Regime
,”
Int. J. Heat Mass Transfer
,
52
(
3–4
), pp.
839
850
.10.1016/j.ijheatmasstransfer.2008.07.032
8.
Sabbah
,
R.
,
Yagoobi
,
J. S.
, and
Al-Hallaj
,
S.
,
2011
, “
Heat Transfer Characteristics of Liquid Flow With Micro-Encapsulated Phase Change Material: Numerical Study
,”
ASME J. Heat Transfer
,
133
, pp.
1
10
.10.1115/1.4004450
9.
Kasza
,
K. E.
, and
Chen
,
M. M.
,
1984
, “
Improvement of the Performance of Solar Energy for Waste Heat Transfer Storage Fluid
,”
Proceedings of the ASME 6th Anniversary Solar Energy, Conference
, Las Vegas, NV, pp.
166
198
.
10.
Goel
,
M.
,
Roy
,
S. K.
, and
Sengupta
,
S.
,
1994
, “
Laminar Forced Convection Heat Transfer in Microencapsulated Phase Change Material Suspension
,”
Int. J. Heat Mass Transfer
,
37
(
4
), pp.
593
604
.10.1016/0017-9310(94)90131-7
11.
Rao
,
Y.
,
Dammel
,
F.
,
Stephan
,
P.
, and
Lin
,
G.
,
2007
, “
Convective Heat Transfer Characteristics of Microencapsulated Phase Change Material Suspensions in Mini-Channels
,”
Heat Mass Transfer
,
44
, pp.
175
186
.10.1007/s00231-007-0232-0
12.
Hao
,
Y. L.
, and
Tao
,
Y. X.
,
2004
, “
A Numerical Model for Phase-Change Suspension Flow in Microchannels
,”
Numer. Heat Transfer, Part A
,
46
, pp.
55
77
.10.1080/10407780490457545
13.
Wang
,
X. C.
,
Niu
,
J.
,
Li
,
Y.
,
Zhang
,
Y.
,
Wang
,
X.
,
Chen
,
B.
,
Zeng
,
R.
, and
Song
,
Q.
,
2008
, “
Heat Transfer Characteristics of Microencapsulated PCM Slurry Flow in a Circular Tube
,”
Am. Inst. Chem. Eng. J.
,
54
(
4
), pp.
1110
1120
.10.1002/aic.11431
14.
Kuravi
,
S.
,
Kota
,
K. M.
,
Du
,
J.
, and
Chow
,
L. C.
,
2009
, “
Numerical Investigation of Flow and Heat Transfer Performance of Nano-Encapsulated Phase Change Material Slurry in Microchannels
,”
ASME J. Heat Transfer
,
131
(
6
), pp.
62901
62910
.10.1115/1.3084123
15.
Sabbah
,
R.
,
Seyed-Yagoobi
,
J.
, and
Al-Hallaj
,
S.
,
2012
, “
Natural Convection With Micro Encapsulated Phase Change Material
,”
ASME J. Heat Transfer
,
134
(
8
), p.
082503
.10.1115/1.4006158
16.
Kondle
,
S.
,
Alvarado
,
J. L.
, and
Marsh
,
C.
,
2013
, “
Laminar Flow Forced Convection Heat Transfer Behavior of a Phase Change Material Fluid in Microchannels
,”
ASME J. Heat Transfer
,
135
(
5
), p.
052801
.10.1115/1.4023221
17.
Wu
,
W.
,
Bostanci
,
H.
,
Chow
,
L. C.
,
Hong
,
Y.
,
Wang
,
C. M.
,
Su
,
M.
, and
Kizito
,
J. P.
,
2013
, “
Heat Transfer Enhancement of PAO in Microchannel Heat Exchanger Using Nano-Encapsulated Phase Change Indium Particles
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
348
355
.10.1016/j.ijheatmasstransfer.2012.11.032
18.
Seyf
,
H. R.
,
Zhou
,
Z.
,
Ma
,
H. B.
, and
Zhang
,
Y.
,
2013
, “
Three Dimensional Numerical Study of Heat Transfer Enhancement by Nano-Encapsulated Phase Change Material Slurry in Microtube Heat Sinks With Tangential Impingement
,”
Int. J. Heat Mass Transfer
,
56
(
1–2
), pp.
561
573
.10.1016/j.ijheatmasstransfer.2012.08.052
19.
Sohankar
,
A.
,
Norberg
,
C.
, and
Davidson
,
L.
,
1998
, “
Low-Reynolds-Number Flow Around a Square Cylinder at Incidence: Study of Blockage, Onset of Vortex Shedding and Outlet Boundary Condition
,”
Int. J. Numer. Methods Fluids
,
26
(
1
), pp.
39
56
.10.1002/(SICI)1097-0363(19980115)26:1<39::AID-FLD623>3.0.CO;2-P
20.
Zhang
,
Y.
, and
Faghri
,
A.
,
1995
, “
Analysis of Forced Convection Heat Transfer in Microcapsulated Phase Change Material Suspensions
,”
J. Thermophys. Heat Transfer
,
9
(
4
), pp.
727
732
.10.2514/3.731
21.
Karnis
,
A.
,
Goldsmith
,
H. L.
, and
Mason
,
S. G.
,
1966
, “
The Kinetics of Flowing Dispersions: I. Concentrated Suspensions of Rigid Particles
,”
J. Colloid Interface Sci.
,
22
(
6
), pp.
531
553
.10.1016/0021-9797(66)90048-8
22.
Watkins
,
R. W.
,
Robertson
,
C. R.
, and
Acrivos
,
A.
,
1976
, “
Entrance Region Heat Transfer in Flowing Suspensions
,”
Int. J. Heat Mass Transfer
,
19
, pp.
693
695
.10.1016/0017-9310(76)90053-3
23.
Vand
,
V.
,
1945
, “
Theory of Viscosity of Concentrated Suspensions
,”
Nature (London)
,
155
, pp.
364
365
.10.1038/155364b0
24.
Vand
,
V.
,
1948
, “
Viscosity of Solutions and Suspensions
,”
J. Phys. Colloid Chem.
,
52
(
2
), pp.
277
299
.10.1021/j150458a001
25.
Zhang
,
Y.
,
Hu
,
X.
, and
Wang
,
X.
,
2003
, “
Theoretical Analysis of Convective Heat Transfer Enhancement of Microencapsulated Phase Change Material Slurries
,”
Heat Mass Transfer
,
40
, pp.
59
66
.10.1007/s00231-003-0410-7
26.
Alisetti
,
E. L.
, and
Roy
,
S. K.
,
2000
, “
Forced Convection Heat Transfer to Phase Change Material Slurries in Circular Ducts
,”
J. Thermophys. Heat Transfer
,
14
(
1
), pp.
115
118
.10.2514/2.6499
27.
Seyf
,
H. R.
, and
Layeghi
,
M.
,
2010
, “
Vapor Flow Analysis in Flat Plate Heat Pipes Using Homotopy Perturbation Method
,”
ASME J. Heat Transfer
,
132
(
5
), p.
054502
.10.1115/1.4000448
28.
Layeghi
,
M.
,
Karimi
,
M.
, and
Seyf
,
H. R.
,
2010
, “
A Numerical Analysis of Thermal Conductivity, Thermal Dispersion, and Structural Effects in the Injection Part of the Resin Transfer Molding Process
,”
J. Porous Media
,
13
(
4
), pp.
375
385
.10.1615/JPorMedia.v13.i4.80
29.
Seyf
,
H. R.
, and
Rassoulinejad-Mousavi
,
S. M.
,
2011
, “
An Analytical Study for Fluid Flow in Porous Media Imbedded Inside a Channel With Moving or Stationary Walls Subjected to Injection/Suction
,”
ASME J. Fluids Eng.
,
133
(
9
), p.
091203
.10.1115/1.4004822
30.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
New York
.
31.
Sohankar
,
A.
,
Norberg
,
C.
, and
Davidson
,
L.
,
1998
, “
Low-Reynolds-Number Flow Around a Square Cylinder at Incidence: Study of Blockage, Onset of Vortex Shedding and Outlet Boundary Condition
,”
Int. J. Numer. Methods Fluids
,
26
(
1
), pp.
39
56
.10.1002/(SICI)1097-0363(19980115)26:1<39::AID-FLD623>3.0.CO;2-P
32.
Paliwal
,
B.
,
Sharma
,
A.
,
Chhabra
,
R. P.
, and
Eswaran
,
V.
,
2003
, “
Power Law Fluid Flow Past a Square Cylinder: Momentum and Heat Transfer Characteristics
,”
Chem. Eng. Sci.
,
58
(
23–24
), pp.
5315
5329
.10.1016/j.ces.2003.09.010
33.
Dhiman
,
A. K.
,
Chhabra
,
R. P.
, and
Eswaran
,
V.
,
2007
, “
Heat Transfer to Power-Law Fluids From a Heated Square Cylinder
,”
Numer. Heat Transfer, Part A
52
, pp.
185
201
.10.1080/10407780601149870
34.
Rao
,
P. K.
,
Sahu
,
A. K.
, and
Chhabra
,
R. P.
,
2011
, “
Momentum and Heat Transfer From a Square Cylinder in Power-Law Fluids
,”
Int. J. Heat Mass Transfer
,
54
, pp.
390
403
.10.1016/j.ijheatmasstransfer.2010.09.032
35.
Sen
,
S.
,
Mittal
,
S.
, and
Biswas
,
G.
,
2011
, “
Flow Past a Square Cylinder at Low Reynolds Numbers
,”
Int. J. Numer. Methods Fluids
,
67
, pp.
1160
1174
.10.1002/fld.2416
You do not currently have access to this content.