Heat removal capacity, coolant pumping power requirement, and surface temperature nonuniformity are three major challenges facing single-phase flow microchannel compact heat exchangers. In this paper multi-objective optimization has been performed to increase heat removal capacity, and decrease pumping power and temperature nonuniformity in complex networks of microchannels. Three-dimensional (3D) four-floor configurations of counterflow branching networks of microchannels were optimized to increase heat removal capacity from surrounding silicon substrate (15 × 15 × 2 mm). Each floor has four different branching subnetworks with opposite flow direction with respect to the next one. Each branching subnetwork has four inlets and one outlet. Branching patterns of each of these subnetworks could be different from the others. Quasi-3D conjugate heat transfer analysis has been performed by developing a software package which uses quasi-1D thermofluid analysis and a 3D steady heat conduction analysis. These two solvers were coupled through their common boundaries representing surfaces of the cooling microchannels. Using quasi-3D conjugate analysis was found to require one order of magnitude less computing time than a fully 3D conjugate heat transfer analysis while offering comparable accuracy for these types of application. The analysis package is capable of generating 3D branching networks with random topologies. Multi-objective optimization using modeFRONTIER software was performed using response surface approximation and genetic algorithm. Diameters and branching pattern of each subnetwork and coolant flow direction on each floor were design variables of multi-objective optimization. Maximizing heat removal capacity, while minimizing coolant pumping power requirement and temperature nonuniformity on the hot surface, were three simultaneous objectives of the optimization. Pareto-optimal solutions demonstrate that thermal loads of up to 500 W/cm2 can be managed with four-floor microchannel cooling networks. A fully 3D thermofluid analysis was performed for one of the optimal designs to confirm the accuracy of results obtained by the quasi-3D simulation package used in this paper.

References

1.
Mudawar
,
I.
,
2001
, “
Assessment of High-Heat-Flux Thermal Management Schemes
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
2
), pp.
122
141
.10.1109/6144.926375
2.
Ebadian
,
M. A.
, and
Lin
,
C. X.
,
2011
, “
A Review of High-Heat-Flux Heat Removal Technologies
,”
ASME J. Heat Transfer
,
133
(
11
), p.
110801
.10.1115/1.4004340
3.
Pence
,
D. V.
,
2000
, “
Improved Thermal Efficiency and Temperature Uniformity Using Fractal Tree-Like Branching Channel Networks
,” Heat Transfer and Transport Phenomena, G. P. Celata, V. P. Carey, M. Groll, I. Tanasawa, and G. Zummo (eds.), Begell House, New York. pp.
142
148
.
4.
Bowers
,
M. B.
, and
Mudawar
,
I.
,
1994
, “
High Flux Boiling in Low Flow Rate, Low Pressure Drop Mini-Channel and Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
37
(
2
), pp.
321
332
.10.1016/0017-9310(94)90103-1
5.
Kim
,
S. J.
, and
Kim
,
D.
,
1999
, “
Forced Convection Cooling in Microstructures for Electronic Equipment Cooling
,”
ASME J. Heat Transfer
,
121
(
3
), pp.
639
645
.10.1115/1.2826027
6.
Fedorov
,
A. G.
, and
Viskanta
,
R.
,
2000
, “
Three-Dimensional Conjugate Heat Transfer in the Microchannel Heat Sink for Electronic Packaging
,”
Int. J. Heat Mass Transfer
,
43
(
3
), pp.
399
415
.10.1016/S0017-9310(99)00151-9
7.
Kosar
,
A.
, and
Peles
,
Y.
,
2006
, “
Thermal-Hydraulic Performance of MEMS-Based Pin Fin Heat Sink
,”
ASME J. Heat Transfer
,
128
(
2
), pp.
121
131
.10.1115/1.2137760
8.
Colgan
,
E. G.
,
Furman
,
B.
,
Gaynes
,
M.
,
Graham
,
W.
,
LaBianca
,
N.
,
Polastre
,
R. J.
,
Rothwell
,
M. B.
,
Bezama
,
R. J.
,
Choudhary
,
R.
,
Marston
,
K.
,
Toy
,
H.
,
Wakil
,
J.
,
Zitz
,
J. A.
, and
Schmidt
,
R.
,
2007
, “
A Practical Implementation of Silicon Microchannel Coolers for High Power Chips
,”
IEEE Trans. Compon. Packag. Technol.
, 30(2), pp. 218–225.10.1109/TCAPT.2007.897977
9.
Walchli
,
R.
,
Brunschwiler
,
T.
,
Michel
,
B.
, and
Poulikakos
,
D.
,
2010
, “
Self-Contained, Oscillating Flow Liquid Cooling System for Thin Form Factor High Performance Electronics
,”
ASME J. Heat Transfer
,
132
(
5
), pp.
1
9
.10.1115/1.4000456
10.
Haller
,
D.
,
Woias
,
P.
, and
Kockmann
,
N.
,
2009
, “
Simulation and Experimental Investigation of Pressure Loss and Heat Transfer in Microchannel Networks Containing Bends and T-Junctions
,”
Int. J. Heat Mass Transfer
,
52
(
11–12
), pp.
2678
2689
.10.1016/j.ijheatmasstransfer.2008.09.042
11.
Kim
,
Y. J.
,
Joshi
,
Y. K.
,
Fedorov
,
A. G.
,
Lee
,
Y.-J.
, and
Lim
,
S.-K.
,
2010
, “
Thermal Characterization of Interlayer Microfluidic Cooling of Three-Dimensional Integrated Circuits With Nonuniform Heat Flux
,”
ASME J. Heat Transfer
,
132
(
4
), pp.
1
9
.10.1115/1.4000885
12.
Martin
,
T. J.
, and
Dulikravich
,
G. S.
,
2001
, “
Aero-Thermo-Elastic Concurrent Design Optimization of Internally Cooled Turbine Blades
,”
Coupled Field Problems
(Series on Advances in Boundary Elements,
A. J.
Kassab
, and
M. H.
Aliabadi
, eds.,
WIT Press
,
Boston, MA
, pp.
137
184
.
13.
Jelisavcic
,
N.
,
Martin
,
T. J.
,
Moral
,
R. J.
,
Sahoo
,
D.
,
Dulikravich
,
G. S.
, and
Gonzalez
,
M.
,
2005
, “
Design Optimization of Networks of Cooling Passages
,”
ASME
Paper No. IMECE2005-79175.10.1115/IMECE2005-79175
14.
Hong
,
F. J.
,
Cheng
,
P.
,
Ge
,
H.
, and
Joo
,
T.
,
2006
, “
Design of a Fractal Tree-Like Microchannel Net Heat Sink for Microelectronic Cooling Limerick, Ireland
,” Paper No. ICNMM2006-96157.
15.
Gonzales
,
M. J.
,
Jelisavcic
,
N.
,
Moral
,
R. J.
,
Sahoo
,
D.
,
Dulikravich
,
G. S.
, and
Martin
,
T. J.
,
2007
, “
Multi-Objective Design Optimization of Topology and Performance of Branching Networks of Cooling Passages
,”
Int. J. Therm. Sci.
,
46
(
11
), pp.
1191
1202
.10.1016/j.ijthermalsci.2007.06.010
16.
Wei
,
X.
, and
Joshi
,
Y.
,
2002
, “
Optimization Study of Stacked Micro-Channel Heat Sinks for Micro-Electronic Cooling
,”
Proceedings of the ITherm 2002
, San Diego, CA, June 1, pp.
441
448
.
17.
Husain
,
A.
, and
Kim
,
K.-Y.
,
2009
, “
Thermal Optimization of a Microchannel Heat Sink With Trapezoidal Cross Section
,”
ASME J. Electron. Packag.
,
131
(
2
), pp.
1
6
.10.1115/1.3103931
18.
Kandlikar
,
S. G.
,
2010
, “
Microchannels: Rapid Growth of a Nascent Technology
,”
ASME J. Heat Transfer
,
132
(
4
), pp.
1
2
.10.1115/1.4000885
19.
Martin
,
T. J.
, and
Dulikravich
,
G. S.
,
2002
, “
Analysis and Multi-Disciplinary Optimization of Internal Coolant Networks in Turbine Blades
,”
AIAA J. Propul. Power
,
18
(
4
), pp.
896
906
.10.2514/2.6015
20.
OpenCFD Ltd., “
OpenFOAM., 2000–2013
,”
http://
www.opencfd.co.uk/openfoam/
21.
Dulikravich
,
G. S.
, and
Martin
,
T. J.
,
2010
, “
Optimization of 3D Branching Networks of Micro-Channels for Microelectronic Device Cooling
,”
14th International Heat Transfer Conference—IHTC
, Washington, DC, Aug. 7–13, Paper No. IHTC14-22719.
22.
Cengel
,
Y. A.
, and
Cimbala
,
J. M.
,
2010
,
Fluid Mechanics: Fundamentals and Applications
, 2nd ed.,
McGraw-Hill
,
New York
, p.
373
.
23.
Chen
,
N. H.
,
1979
, “
An Explicit Equation for Friction Factor in Pipe
,”
Ind. Eng. Chem. Fundam.
,
18
(
3
), pp.
296
297
.10.1021/i160071a019
24.
Ghanbari
,
A.
,
Farshad
,
F. F.
, and
Rieke
,
H. H.
,
2011
, “
Newly Developed Friction Factor Correlation for Pipe Flow and Flow Assurance
,”
J. Chem. Eng. Mater. Sci.
,
2
(
6
), pp.
83
86
.
25.
Sharp
,
Z. B.
,
Johnson
,
M. C.
,
Barfuss
,
S. L.
, and
Rahmeyer
,
W. J.
,
2010
, “
Energy Losses in Cross Junctions
,”
J. Hydraul. Eng.
,
136
(
1
), pp.
50
55
.10.1061/(ASCE)HY.1943-7900.0000126
26.
White
,
F. M.
,
2008
,
Fluid Mechanics
, 6th ed.,
McGraw-Hill
,
New York
.
27.
Streeter
,
V. L.
, and
Wylie
,
E. B.
,
1985
,
Fluid Mechanics
, 8th ed.,
McGraw-Hill
,
New York
.
28.
Hamilton
,
J. B.
,
1929
, “
University of Washington Engineering Experimental Station Bulletin
,” p.
51
.
29.
Harris
,
C. W.
,
1928
, “
University of Washington Engineering Experimental Station Bulletin
,” p.
48
.
30.
Hydraulic Institute,
1979
,
Engineering Data Book
, 1st ed.,
Cleveland Hydraulic Institute
, Cleveland, OH.
31.
Abdoli, A., and Dulikravich, G. S., 2013, “Optimized Multi-Floor Throughflow Micro Heat Exchangers,”
Int. J. Therm. Sci.
,
78
, pp. 111–123.10.1016/j.ijthermalsci.2013.12.008
32.
Jones
,
K. W.
,
Liu
,
Y.-Q.
, and
Cao
,
M.-C.
,
2003
, “
Micro Heat Pipes in Low Temperature Cofire Ceramic (LTCC) Substrates
,”
IEEE Trans. Compon. Packag. Technol.
,
26
(
1
), pp.
110
115
.10.1109/TCAPT.2003.811475
33.
Saha
,
A. A.
, and
Mitra
,
S. K.
,
2012
,
Microfluidics and Nanofluidics Handbook: Chemistry, Physics, and Life Science Principles
,
Taylor & Francis Group
, Boca Raton, FL, pp.
139
155
.
34.
modeFRONTIER Optimization Software
,” http://www.esteco.com
35.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2000
, “
A Fast and Elitist Multi-Objective Genetic Algorithm-NSGA-II
,” KanGAL Report No. 2000001.
36.
Deb
,
K.
, and
Agrawal
,
R. B.
,
1995
, “
Simulated Binary Crossover for Continuous Search Space
,”
Complex Syst.
,
9
(
2
), pp.
115
–148.
37.
Bejan
,
A.
,
2000
,
Shape and Structure, From Engineering to Nature
,
Cambridge University
,
Cambridge, UK
.
You do not currently have access to this content.