Turbulent flow and heat transfer of air with variable properties in a set of regular polygonal ducts and circular tube have been numerically simulated. All the ducts have the same hydraulic diameter as their characteristic lengths in the Reynolds number. The flow is modeled as three-dimensional (3D) and fully elliptic by using the finite volume method and the standard k-ε turbulence model. The results showed that the relatively strong secondary flow could be observed with variable properties fluid. For the regular polygonal ducts, the local heat transfer coefficient along circumferential direction is not uniform; there is an appreciable reduction in the corner region and the smaller the angle of the corner region, the more appreciable deterioration the corner region causes. The use of hydraulic diameter for regular polygonal ducts leads to unacceptably large errors in turbulent heat transfer determined from the circular tube correlations. Based on the simulation results, a correction factor is proposed to predict turbulent heat transfer in regular polygonal ducts.

References

1.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
, “
Laminar Forced Convection in Ducts
,”
Advances in Heat Transfer: Supplement
,
Academic
,
San Diego, CA
.
2.
Yang
,
S. M.
, and
Tao
,
W. Q.
,
2006
,
Heat Transfer
, 4th ed.,
Higher Education
,
Beijing, China
.
3.
Lienhard
,
J. H.
,
2006
,
A Heat Transfer Textbook
, 3rd ed.,
Phlogiston
,
Cambridge, MA
.
4.
Eckert
,
E. R. G.
, and
Irvine
,
T. F.
,
1956
, “
Flow in Corners of Passages With Non-Circular Cross Sections
,”
Trans. ASME
,
78
(
4
), pp.
709
718
.
5.
Eckert
,
E. R. G.
, and
Irvine
,
T. F.
,
1960
, “
Pressure Drop and Heat Transfer in a Duct With Triangular Cross-Section
,”
ASME J. Heat Transfer
,
82
(
2
), pp.
125
138
.10.1115/1.3679891
6.
Carlson
,
L. W.
, and
Irvine
,
T. F.
,
1961
, “
Fully Developed Pressure Drop in Triangular Shaped Ducts
,”
ASME J. Heat Transfer
,
83
(
4
), pp.
441
444
.10.1115/1.3683663
7.
Nan
,
S. F.
, and
Dou
,
M.
,
2000
, “
A Method of Correlating Fully Developed Turbulent Friction in Triangular Ducts
,”
ASME J. Fluids Eng.
,
122
(
3
), pp.
634
636
.10.1115/1.1287035
8.
Leung
,
C. W.
,
Chan
,
T. L.
, and
Chen
,
S.
,
2001
, “
Forced Convection and Friction in Triangular Duct With Uniformly Spaced Square Ribs on Inner Surfaces
,”
Heat Mass Transfer
,
3
, pp.
719
725
.
9.
He
,
S.
, and
Gotts
,
J. A.
,
2004
, “
Calculation of Friction Coefficients for Noncircular Channels
,”
ASME J. Fluids Eng.
,
126
(
6
), pp.
1033
1038
.10.1115/1.1845479
10.
Duan
,
Z. P.
,
2012
, “
New Correlative Models for Fully Developed Turbulent Heat and Mass Transfer in Circular and Noncircular Ducts
,”
ASME J. Heat Transfer
,
134
(
1
), p.
014503
.10.1115/1.4004855
11.
Duan
,
Z. P.
, and
Muzychka
,
Y. S.
,
2010
, “
Slip Flow in the Hydrodynamic Entrance Region of Circular and Noncircular Microchannels
,”
ASME J. Fluids Eng.
,
132
(
1
), p.
011201
.10.1115/1.4000692
12.
Bhatti
,
M. S.
, and
Shah
,
R. K.
,
1987
, “
Turbulent and Transition Flow Convective Heat Transfer in Ducts
,”
Handbook of Single-Phase Convective Heat Transfer
,
S.
KaKac
,
R. K.
Shah
, and
W.
Aung
, eds.,
Wiley
,
New York
, Chap. 4.
13.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1930
,
Heat Transfer in Automobile Radiators of the Tubular Type
, Vol.
2
,
University of California (Berkeley) Publications
,
Berkeley, CA
, pp.
443
461
.
14.
McAdams
,
W. H.
,
1954
,
Heat Transmission
,
McGraw-Hill
,
New York
.
15.
AI-Arabi
,
M.
,
1958
, “
Study of Existing Data for Heating of Air and Water in Turbulent Flow in Inside Tubes
,” ASME Paper No. 58-A-298.
16.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
, pp.
359
368
.
17.
Babas' Haq
,
R. F.
,
1992
, “
Forced Convection Heat Transfer From a Pipe to Air Flowing Turbulently Inside It
,”
Exp. Heat Transfer
,
5
, pp.
161
173
.10.1080/08916159208946439
18.
Jones
,
D. C.
,
1976
, “
An Improvement in the Calculation of Turbulent Friction in Rectangular Ducts
,”
ASME J. Fluids Eng.
,
98
(
2
), pp.
173
181
.10.1115/1.3448250
19.
Hirota
,
M.
,
Fujita
,
H.
,
Yokosawa
,
H.
,
Nakai
,
H.
, and
Itoh
,
H.
,
1997
, “
Turbulent Heat Transfer in a Square Duct
,”
Int. J. Heat Fluid Flow
,
18
, pp.
170
180
.10.1016/S0142-727X(96)00151-8
20.
Malak
,
J.
,
Hejna
,
J.
, and
Schmid
,
J.
,
1975
, “
Pressure Losses and Heat Transfer in Noncircular Channels With Hydraulically Smooth Walls
,”
Int. J. Heat Mass Transfer
,
18
, pp.
139
149
.10.1016/0017-9310(75)90016-2
21.
Aly
,
A. M. M.
,
Trupp
,
A. C.
, and
Gerrard
,
A. D.
,
1978
, “
Measurements and Prediction of Fully Developed Turbulent Flow in an Equilateral Triangular Duct
,”
J. Fluid Mech.
,
85
, pp.
57
83
.10.1017/S0022112078000531
22.
Emery
,
A. F.
,
Neighbors
,
P. K.
, and
Gessner
,
F. B.
,
1980
, “
The Numerical Prediction of Developing Turbulent Flow and Heat Transfer in a Square Duct
,”
ASME J. Heat Transfer
,
102
(
1
), pp.
51
57
.10.1115/1.3244248
23.
Aolin
,
Ge
,
J. X.
, and
Cai
,
Z. H.
,
1989
, “
An Investigation of Developing Flow and Heat Transfer in a Triangular Duct
,”
J. Shanghai Inst. Mech. Eng.
11
(
4
), pp.
1
12
.
24.
Domaschke
,
N.
,
Wolfersdorf
,
J. V.
, and
Semmler
,
K.
,
2012
, “
Heat Transfer and Pressure Drop Measurements in a Rib Roughened Leading Edge Cooling Channel
,”
ASME J. Turbomach.
,
134
(
6
), p.
061006
.10.1115/1.4004747
25.
Nakayama
,
A.
,
Chow
,
W. L.
, and
Sharma
,
D.
,
1983
, “
Calculation of Fully Development Turbulent Flows in Ducts of Arbitrary Cross Section
,”
J. Fluid Mech.
,
128
, pp.
199
217
.10.1017/S0022112083000440
26.
Launder
,
B. E.
, and
Ying
,
W. M.
,
1973
, “
Prediction of Flow and Heat Transfer in Ducts of Square Cross Section
,”
Proc. Inst. Mech. Eng.
,
187
, pp.
455
461
.10.1243/PIME_PROC_1973_187_131_02
27.
Wang
,
L. B.
,
Wang
,
Q. W.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2002
, “
Experimental and Numerical Study of Developing Turbulent Flow and Heat Transfer in Convergent/Divergent Square Ducts
,”
Heat Mass Transfer
,
38
, pp.
399
408
.10.1007/s002310100209
28.
Nguyen
,
L. P.
, and
Kazuhide
,
I.
,
2013
, “
Experimental and Numerical Study of Airflow Pattern and Particle Dispersion in a Vertical Ventilation Duct
,”
Build. Environ.
,
59
, pp.
466
481
.10.1016/j.buildenv.2012.09.014
29.
Yang
,
G.
, and
Ebadian
,
M. A.
,
1991
, “
Effect of Reynolds and Prandtl Numbers on Turbulent Convective Heat Transfer in a Three-dimensional Square Duct
,”
Numer. Heat Transfer A
,
20
, pp.
111
122
.10.1080/10407789108944812
30.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing Co.
,
New York
.
31.
Albets-Chico
,
X.
,
Perez-Segarra
,
C. D.
,
Oliva
,
A.
, and
Bredberg
,
J.
,
2008
, “
Analysis of Wall-Function Approaches Using Two-Equation Turbulence Models
,”
Int. J. Heat Mass Transfer
,
51
, pp.
4940
4957
.10.1016/j.ijheatmasstransfer.2008.03.002
32.
Launder
,
B. E.
,
1988
, “
On the Computation Convective Heat Transfer in Complex Turbulent Flows
,”
ASME J. Heat Transfer
,
110
(
4b
), pp.
1112
1128
.10.1115/1.3250614
33.
Ince
,
N.
, and
Launder
,
B. E.
,
1989
, “
Computation of Buoyancy-Driven Turbulent Flows in Rectangular Enclosures
,”
Int. J. Heat Fluid Flow
,
10
, pp.
110
117
.10.1016/0142-727X(89)90003-9
34.
Wilcox
,
D. C.
,
1994
, “
Simulation of Transition With a Two-Equation Turbulence Model
,”
AIAA J.
,
32
, pp.
247
255
.10.2514/3.59994
35.
Moser
,
R. D.
,
Kim
,
J.
, and
Mansour
,
N. N.
,
1999
, “
Direct Numerical Simulation of Turbulent Chanel Flow Up to Reτ = 590
,”
Phys. Fluids
,
11
, pp.
943
945
.10.1063/1.869966
36.
Lauder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
, pp.
269
289
.10.1016/0045-7825(74)90029-2
37.
Markatos
,
N. C.
,
1986
, “
The Mathematical Modeling of Turbulence Flows
,”
Appl. Math. Modell.
,
10
, pp.
190
220
.10.1016/0307-904X(86)90045-4
38.
Pourahmadi
,
F.
, and
Humphery
,
J. A. C.
,
1983
, “
Prediction of Curved Channel Flow With an Extended k-ε Model of Turbulence
,”
AIAA J.
,
21
, pp.
1365
1373
.10.2514/3.8255
39.
Tao
,
W. Q.
,
2001
,
Numerical Heat Transfer
,
Xi'an Jiaotong University
,
Xi'an, China
.
40.
Blasius
,
H.
,
1913
, “
Das Ahnlichkeitsgesetz bei Reibungsvorgangen in Flussigkeiten
,”
VDI Forschungsh.
,
131
, pp.
1
12
.
41.
Filonenko
,
G. K.
,
1954
, “
Hydraulic Resistance in Pipes
,”
Teploenergetika
,
1
, pp.
40
44
.
42.
Salazar
,
A. J.
, and
Campo
,
A.
,
1990
, “
Prediction of the Thermal Entry Length Without Solving the Complete Entrance Length Problem
,”
Int. J. Heat Fluid Flow
,
11
(
1
), pp.
48
53
.10.1016/0142-727X(90)90024-6
43.
Fleming
,
D. P.
, and
Sparrow
,
E. M.
,
1969
, “
Flow in the Hydrodynamic Entrance Region of Ducts of Arbitrary Section
,”
ASME J. Heat Transfer
,
91
(
3
), pp.
345
354
.10.1115/1.3580173
44.
Schiller
,
L.
,
1923
, “
Uber den Stromungswiderstand von Rohrenverschiedenen Querschitts und Rauhigkeitsgrades
,”
Z. Angew. Math. Mech.
,
3
, pp.
2
13
.10.1002/zamm.19230030102
45.
Nikuradse
,
J.
,
1930
, “
Untersuchungen uber turbulent Stromung in nicht kreisformigen Rohren
,”
Ing. Arch.
,
1
, pp.
306
332
.10.1007/BF02079937
You do not currently have access to this content.