A study was conducted to experimentally characterize the pool boiling performance of hydrofluorocarbon HFC-245fa at pressures ranging from 0.15 MPa to 1.1 MPa (reduced pressure range: 0.04–0.31). Pool boiling experiments were conducted using horizontally oriented 1-cm2 heated surfaces to quantify the effects of pressure and a microporous-enhanced coating on heat transfer coefficients and critical heat flux (CHF) values. Results showed that the coating enhanced heat transfer coefficients and CHF by 430% and 50%, respectively. The boiling heat transfer performance of HFC-245fa was then compared with the boiling performance of HFC-134a and hydrofluoroolefin HFO-1234yf.
Issue Section:
Evaporation, Boiling, and Condensation
References
1.
Moreno
, G.
, Narumanchi
, S.
, and King
, C.
, 2013
, “Pool Boiling Heat Transfer Characteristics of HFO-1234yf on Plain and Microporous-Enhanced Surfaces
,” ASME J. Heat Transfer
, 135
(11
), p. 111014
.10.1115/1.40246222.
E.P.A.,
2012
, “Protection of Stratospheric Ozone: Amendment to the HFO-1234yf SNAP Rule for Motor Vehicle Air Conditioning Sector
,” Federal Register 57
, pp. 17344–17351, Available at https://federalregister.gov/a/2012-6916.3.
Campbell
, J. B.
, Tolbert
, L. M.
, Ayers
, C. W.
, Ozpineci
, B.
, and Lowe
, K. T.
, 2007
, “Two-Phase Cooling Method Using the R134a Refrigerant to Cool Power Electronic Devices
,” IEEE Trans. Ind. Appl.
, 43
(3
), pp. 648
–656
.10.1109/TIA.2007.8957194.
Chen
, H.
, Goswami
, D. Y.
, and Stefanakos
, E. K.
, 2010
, “A Review of Thermodynamic Cycles and Working Fluids for the Conversion of Low-Grade Heat
,” Renewable Sustainable Energy Rev.
, 14
(9
), pp. 3059
–3067
.10.1016/j.rser.2010.07.0065.
Angelino
, G.
, and Invernizzi
, C.
, 2003
, “Experimental Investigation on the Thermal Stability of Some New Zero ODP Refrigerants
,” Int. J. Refrig.
, 26
(1
), pp. 51
–58
.10.1016/S0140-7007(02)00023-36.
Chien
, L.-H.
, and Tsai
, Y.-L.
, 2011
, “An Experimental Study of Pool Boiling and Falling Film Vaporization on Horizontal Tubes in R-245fa
,” Appl. Therm. Eng.
, 31
(17–18
), pp. 4044
–4054
.10.1016/j.applthermaleng.2011.08.0077.
Chen
, T.
, 2012
, “Water-Heated Pool Boiling of Different Refrigerants on the Outside Surface of a Horizontal Smooth Tube
,” ASME J. Heat Transfer
, 134
(2
), p. 021502
.10.1115/1.40049028.
Kedzierski
, M. A.
, 2006
, “A Comparison of R245fa Pool Boiling Measurements to R123, R-245fa/Isopentane on a Passively Enhanced, Horizontal Surface
,” Int. J. Transp. Phenom.
, 8
(4
), pp. 331
–344
.9.
Agostini
, B.
, Thome
, J. R.
, Fabbri
, M.
, Michel
, B.
, Calmi
, D.
, and Kloter
, U.
, 2008
, “High Heat Flux Flow Boiling in Silicon Multi-Microchannels - Part I: Heat Transfer Characteristics of Refrigerant R236fa
,” Int. J. Heat Mass Transfer
, 51
(21
), pp. 5400
–5414
.10.1016/j.ijheatmasstransfer.2008.03.00610.
Costa-Patry
, E.
, Olivier
, J.
, Michel
, B.
, and Thome
, J. R.
, 2011
, “Two-Phase Flow of Refrigerants in 85 μm-Wide Multi-Microchannels: Part II—Heat Transfer With 35 Local Heaters
,” Int. J. Heat Fluid Flow
, 32
(2
), pp. 464
–476
.10.1016/j.ijheatfluidflow.2011.01.00611.
Ong
, C.
, and Thome
, J.
, 2011
, “Macro-to-Microchannel Transition in Two-Phase Flow: Part 2-Flow Boiling Heat Transfer and Critical Heat Flux
,” Exp. Therm. Fluid Sci.
, 35
(6
), pp. 873
–886
.10.1016/j.expthermflusci.2010.12.00312.
Kotthoff
, S.
, Gorenflo
, D.
, Danger
, E.
, and Luke
, A.
, 2006
, “Heat Transfer and Bubble Formation in Pool Boiling: Effect of Basic Surface Modifications for Heat Transfer Enhancement
,” Int. J. Therm. Sci.
, 45
(3
), pp. 217
–236
.10.1016/j.ijthermalsci.2005.01.01113.
Yang
, S. W.
, Jeong
, J.
, and Kang
, Y. T.
, 2008
, “Experimental Correlation of Pool Boiling Heat Transfer for HFC134a on Enhanced Tubes: Turbo-E
,” Int. J. Refrig.
, 31
(1
), pp. 130
–137
.10.1016/j.ijrefrig.2007.07.00714.
van Rooyen
, E.
, and Thome
, J.
, 2012
, “Pool Boiling Data and Prediction Method for Enhanced Boiling Tubes With R-134a, R236fa and R-1234ze (E)
,” Int. J. Refrig.
, 36
(2
), pp. 447
–455
.10.1016/j.ijrefrig.2012.11.02315.
Chu
, K.-H.
, Enright
, R.
, and Wang
, E. N.
, 2012
, “Structured Surfaces for Enhanced Pool Boiling Heat Transfer
,” Appl. Phys. Lett.
, 100
(24
), p. 241603
.10.1063/1.472419016.
Liter
, S. G.
, and Kaviany
, M.
, 2001
, “Pool-Boiling CHF Enhancement by a Modulated Porous-Layer Coating: Theory and Experiment
,” Int. J. Heat Mass Transfer
, 44
(22
), pp. 4287
–4311
.10.1016/S0017-9310(01)00084-917.
Furberg
, R.
, and Palm
, B.
, 2011
, “Boiling Heat Transfer on a Dendritic and Micro-Porous Surface in R134a and FC-72
,” Appl. Therm. Eng.
, 31
(16
), pp. 3595
–3603
.10.1016/j.applthermaleng.2011.07.02718.
Pialago
, E. J. T.
, Kwon
, O. K.
, and Park
, C. W.
, 2013
, “Nucleate Boiling Heat Transfer of R134a on Cold Sprayed CNT–Cu Composite Coatings
,” Appl. Therm. Eng.
, 56
(1–2
), pp. 112
–119
.10.1016/j.applthermaleng.2013.03.04619.
3M,
2009
, “3M™ Microporous Metallic Boiling Enhancement Coating (BEC) L-20227
,” 3M. Available at: http://multimedia.3m.com/mws/mediawebserver?mwsId=66666UgxGCuNyXTtNxfXNxfaEVtQEcuZgVs6EVs6E666666--&fn=L20227_6003603.pdf20.
Dieck
, R. H.
, 2007
, Measurement Uncertainty: Methods and Applications
, ISA
, Research Triangle Park, NC
.21.
Nishikawa
, K.
, Fujita
, Y.
, Ohta
, H.
, and Hidaka
, S.
, 1982
, “Effects of System Pressure and Surface Roughness on Nucleate Boiling Heat Transfer
,” Mem. Fac. Eng., Kyushu Univ.
, 42
(2
), pp. 95
–111
.22.
Rohsenow
, W. M.
, 1962
, “A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids
,” Trans. ASME
, 84
, pp. 969
–975
.23.
Rainey
, K. N.
, You
, S. M.
, and Lee
, S.
, 2003
, “Effect of Pressure, Subcooling, and Dissolved Gas on Pool Boiling Heat Transfer From Microporous Surfaces in FC-72
,” ASME J. Heat Transfer
, 125
(1
), pp. 75
–83
.10.1115/1.152789024.
Li
, C.
, and Peterson
, G. P.
, 2007
, “Parametric Study of Pool Boiling on Horizontal Highly Conductive Microporous Coated Surfaces
,” ASME J. Heat Transfer
, 129
(11
), pp. 1465
–1475
.10.1115/1.275996925.
Cichelli
, M. T.
, and Bonilla
, C. F.
, 1945
, “Heat Transfer to Liquids Boiling Under Pressure
,” Am. Inst. Chem. Eng.
, 41
, pp. 755
–787
.26.
Morozov
, V. G.
, 1961
, “An Experimental Study of Critical Heat Loads at Boiling of Organic Liquids on a Submerged Heating Surface
,” Int. J. Heat Mass Transfer
, 2
(3
), pp. 252
–258
.10.1016/0017-9310(61)90093-X27.
Zuber
, N.
, 1959
, “Hydrodynamic Aspects of Boiling Heat Transfer
,” UCLA, AEC Report No. AECU-4439.28.
Lienhard
, J. H.
, Dhir
, V. K.
, and Riherd
, D. M.
, 1973
, “Peak Pool Boiling Heat-Flux Measurements on Finite Horizontal Flat Plates
,” ASME J. Heat Transfer
, 95
(4
), pp. 477
–482
.10.1115/1.345009229.
Webb
, R. L.
, and Pais
, C.
, 1992
, “Nucleate Pool Boiling Data for Five Refrigerants on Plain, Integral-Fin and Enhanced Tube Geometries
,” Int. J. Heat Mass Transfer
, 35
(8
), pp. 1893
–1904
.10.1016/0017-9310(92)90192-U30.
Carey
, V. P.
, 1992
, Liquid-Vapor Phase Change Phenomena
, Taylor & Francis
, Hebron, KY
.31.
El-Genk
, M. S.
, and Parker
, J. L.
, 2005
, “Enhanced Boiling of HFE-7100 Dielectric Liquid on Porous Graphite
,” Energy Convers. Manage.
, 46
(15–16
), pp. 2455
–2481
.10.1016/j.enconman.2004.11.012Copyright © 2014 by ASME
You do not currently have access to this content.