Aerosolized metal nanoparticles have numerous existing and emerging applications in materials science, but their functionality in these roles is strongly size-dependent. Very recently, time-resolved laser-induced incandescence (TiRe-LII) has been investigated as a candidate for sizing aerosolized metal nanoparticles, which requires an accurate model of the heat transfer through which the laser-energized particles re-equilibrate with the bath gas. This paper presents such a model for molybdenum nanoparticles, which is then used to analyze experimental TiRe-LII data made on aerosols of molybdenum nanoparticles in helium, argon, nitrogen, and carbon dioxide. While it is possible to estimate the particle size distribution width, recovering particles sizes requires independent knowledge of the thermal accommodation coefficient, which is presently unknown.

References

1.
Moisala
,
A.
,
Nasibulin
,
A. G.
, and
Kauppinen
,
E. I.
,
2003
, “
The Role of Metal Nanoparticles in the Catalytic Production of Single-Walled Carbon Nanotubes—A Review
,”
J. Phys.: Condens. Matter
,
15
, pp. S3011–S3035.10.1088/0953-8984/15/42/003
2.
Atwater
,
H. A.
, and
Polman
,
A.
,
2010
, “
Plasmonics for Improved Photovoltaic Devices
,”
Nature Mater.
,
9
, pp.
205
213
.10.1038/nmat2629
3.
Wooldridge
,
M. S.
,
1998
, “
Gas-Phase Combustion Synthesis of Particles
,”
Prog. Energy Combust. Sci.
,
24
, pp.
63
87
.10.1016/S0360-1285(97)00024-5
4.
Melton
,
L. A.
,
1984
, “
Soot Diagnostics Based on Laser Heating
,”
Appl. Opt.
,
23
, pp.
2201
2208
.10.1364/AO.23.002201
5.
Filippov
,
A.
,
Markus
,
M.
, and
Roth
,
P.
,
1999
, “
In-Situ Characterization of Ultrafine Particles by Laser-Induced Incandescence: Sizing and Particle Structure Determination
,”
J. Aerosol Sci.
,
30
, pp.
71
87
.10.1016/S0021-8502(98)00021-4
6.
Liu
,
F.
,
Daun
,
K.
,
Snelling
,
D.
, and
Smallwood
,
G.
,
2006
, “
Heat Conduction From a Spherical Nano-Particle: Status of Modeling Heat Conduction in Laser-Induced Incandescence
,”
Appl. Phys. B: Lasers Opt.
,
83
, pp.
355
382
.10.1007/s00340-006-2194-1
7.
Starke
,
R.
,
Kock
,
B.
, and
Roth
,
P.
,
2003
, “
Nano-Particle Sizing by Laser-Induced-Incandescence (LII) in a Shock Wave Reactor
,”
Shock Waves
,
12
, pp.
351
360
.10.1007/s00193-003-0178-1
8.
Kock
,
B. F.
,
Kayan
,
C.
,
Knipping
,
J.
,
Orthner
,
H. R.
, and
Roth
,
P.
,
2005
, “
Comparison of LII and TEM Sizing During Synthesis of Iron Particle Chains
,”
Proc. Combust. Inst.
,
30
, pp.
1689
1697
.10.1016/j.proci.2004.07.034
9.
Friedlander
,
S.
, and
Wang
,
C.
,
1966
, “
The Self-Preserving Particle Size Distribution for Coagulation by Brownian Motion
,”
J. Colloid Interface Sci.
,
22
, pp.
126
132
.10.1016/0021-9797(66)90073-7
10.
Eremin
,
A.
,
Gurentsov
,
E.
, and
Schulz
,
C.
,
2008
, “
Influence of the Bath Gas on the Condensation of Supersaturated Iron Atom Vapour at Room Temperature
,”
J. Phys. D
,
41
, p.
055203
.10.1088/0022-3727/41/5/055203
11.
Reimann
,
J.
,
Oltmann
,
H.
,
Will
,
S.
,
Bassano
,
E.
,
Carotenuto
,
L.
,
Lösch
,
S.
,
Günther
,
B. H.
,
2010
, “
Laser Sintering on Nickel Aggregates Produced From Inert Gas Condensation
,”
Proceeding of the World Congress on Particle Technology 6
, Nuremberg, Germany, Apr. 26–29.
12.
Daun
,
K.
,
Titantah
,
J.
, and
Karttunen
,
M
.,
2012
, “
Molecular Dynamics Simulation of Thermal Accommodation Coefficients for Laser-Induced Incandescence Sizing of Nickel Particles
,”
Appl. Phys. B: Lasers Opt.
, 107, pp. 221–228. 10.1007/s00340-012-4896-x
13.
Murakami
,
Y.
,
Sugatani
,
T.
, and
Nosaka
,
Y.
,
2005
, “
Laser-Induced Incandescence Study on the Metal Aerosol Particles as the Effect of the Surrounding Gas Medium
,”
J. Phys. Chem. A
,
109
, pp.
8994
9000
.10.1021/jp058044n
14.
Bohren
,
C. F.
, and
Huffman
,
D. R.
,
1983
,
Absorption and Scattering of Light by Small Particles
,
John Wiley & Sons
,
New York
.
15.
Hinds
,
W. C.
,
1982
,
Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles
,
John Wiley and Sons
,
New York
.
16.
Roth
,
P.
, and
Filippov
,
A. V.
,
1996
,
“In situ Ultrafine Particle Sizing by a Combination of Pulsed Laser Heatup and Particle Thermal Emission,”
J. Aerosol Sci.
,
27
, pp.
95
104
.10.1016/0021-8502(95)00531-5
17.
Daun
,
K. J.
,
Stagg
,
B. J.
,
Liu
,
F.
,
Smallwood
,
G. J.
, and
Snelling
,
D. R.
,
2007
,
“Determining Aerosol Particle Size Distributions Using Time-Resolved Laser-Induced Incadescence,”
Appl. Phys. B
,
87
, pp.
363
372
.10.1007/s00340-007-2585-y
18.
Juenker
,
D.
,
Leblanc
,
L.
, and
Martin
,
C.
,
1968
, “
Optical Properties of Some Transition Metals
,”
J. Opt. Soc. Am.
,
58
, pp.
164
171
.10.1364/JOSA.58.000164
19.
Palik
,
E. D.
, ed.,
1998
,
Handbook of Optical Constants of Solids
,
Academic Press
,
San Diego, CA
.
20.
Price
,
D. J.
,
1947
,
“The Temperature Variation of the Emissivity of Metals in the Near Infra-Red,”
Proc. Phys. Soc.
,
59
, pp.
131
138
.10.1088/0959-5309/59/1/319
21.
Modest
,
M. F.
,
2003
,
Radiative Heat Transfer
, 2nd ed.,
Academic Press
,
New York
, p.
84
.
22.
Holland
,
P. W.
, and
Welsch
,
R. E.
,
1977
, “
Robust Regression Using Iteratively Reweighted Least-Squares
,”
Commun. Stat: Theory Meth.
,
6
, pp.
813
827
.10.1080/03610927708827533
23.
Paradis
,
P. F.
,
Ishikawa
,
T.
, and
Nosaka
,
Y.
,
2005
,
“Noncontact Measurements of Thermophysical Properties of Molybdenum at High Temperatures,”
Int. J. Thermophys.
,
23
, pp.
555
569
.10.1023/A:1015169721771
24.
Daun
,
K. J.
,
2009
,
“Thermal Accommodation Coefficients Between Polyatomic Gas Molecules and Soot in Laser-Induced Incandescence Experiments,”
Int. J. Heat Mass Transfer
,
52
, pp.
5081
5089
.10.1016/j.ijheatmasstransfer.2009.05.006
25.
Filippov
,
A.
, and
Rosner
,
D.
,
2000
, “
Energy Transfer Between an Aerosol Particle and Gas at High Temperature Ratios in the Knudsen Transition Regime
,”
Int. J. Heat Mass Transfer
,
43
, pp.
127
138
.10.1016/S0017-9310(99)00113-1
26.
Fernández Guillermet
,
A.
,
1985
, “
Critical Evaluation of the Thermodynamic Properties of Molybdenum
,”
Int. J. Thermophys.
,
6
, pp.
367
393
.10.1007/BF00500269
27.
Nunomura
,
S.
,
Yoshida
,
I.
, and
Kondo
,
M.
,
2009
,
“Time-Dependent Gas Phase Kinetics in a Hydrogen Diluted Silane Plasma,”
Appl. Phys. Lett.
,
94
, p.
071502
.10.1063/1.3086312
28.
Wu
,
C. F. J.
,
1986
,
“Jacknife, Bootstrap and Other Resampling Method in Regression Analysis,”
Ann. Stat.
,
14
, pp.
1261
1295
.10.1214/aos/1176350142
29.
Cook
,
D. R.
, and
Weisberg
,
S.
,
1982
,
Residuals and Influence in Regression
,
Chapman and Hall
,
New York
.
30.
Liu
,
F.
,
Stagg
,
B. J.
,
Snelling
,
D. R.
, and
Smallwood
,
G. J.
,
2006
, “
Effects of Primary Soot Particle Size Distribution on the Temperature of Soot Particles Heated by a Nanosecond Pulsed Laser in an Atmospheric Laminar Diffusion Flame
,”
Int. J. Heat Mass Transfer
,
49
, pp.
777
788
.10.1016/j.ijheatmasstransfer.2005.07.041
You do not currently have access to this content.