Nanoparticles made of polymer encapsulated phase change materials (PCM) are added in air to enhance the heat transfer performance of air jet impingement flows applied to cooling processes. Encapsulation prevents agglomeration of the PCM (paraffin) nanoparticles when they are in the liquid phase. The sizes of the particles are chosen to be small enough so that they maintain near velocity equilibrium with the air stream. Small solid paraffin particles can absorb a significant amount of energy rapidly from a heat source by changing phase from solid to liquid. Nanoparticle volume fraction is found to play an important role in determining the overall pressure drop and heat transfer of the jet impingement process. Specifically, air jets laden with 2.5% particulate volume fraction were shown to improve the average heat transfer coefficient by 58 times in the air flow speed range of 4.6 to 15.2 m/s when compared to that of pure air alone. In addition, the structural integrity of the encapsulating shells was demonstrated to be excellent by the repeated use of the nanoparticles in closed loop testing.

References

1.
Bandrowski
,
J.
, and
Kaczmarzyk
,
G.
,
1978
, “
Gas-to-Particle Heat Transfer in Vertical Pneumatic Conveying of Granular Materials
,”
Chem. Eng. Sci.
,
33
, pp.
1303
1310
.10.1016/0009-2509(78)85111-2
2.
Yamagishi
,
Y.
,
Takeuchi
,
H.
,
Pyatenko
,
T. A.
, and
Kayukawa
,
N.
,
1999
, “
Characteristics of Microencapsulated PCM Slurry Mixed With Nanoparticles as a Heat Transfer Fluid
,”
AIChE J.
,
45
, pp.
696
707
.10.1002/aic.690450405
3.
Yang
,
Y.
,
Crowe
,
C. T.
,
Chung
,
J. N.
, and
Troutt
,
T. R.
,
2000
, “
Experiments on Particle Dispersion in a Plane Wake
,”
Int. J. Multiphase Flow
,
26
, pp.
1583
1607
.10.1016/S0301-9322(99)00105-6
4.
Crowe
,
C. T.
,
Chung
,
J. N.
, and
Troutt
,
T. R.
,
1996
, “
Numerical Models for Two Phase Turbulence Flows
,”
Ann, Rev, Fluid Mech.
,
28
, pp.
11
43
.10.1146/annurev.fl.28.010196.000303
5.
Hong
,
Y.
,
Ding
,
S. J.
,
Wu
,
W.
,
Hu
,
J. J.
,
Voevodin
,
A. A.
,
Gschwender
,
L.
,
Snyder
,
E.
,
Chow
,
L. C.
, and
Su
,
M.
,
2010
, “
Enhancing Heat Capacity of Colloidal Suspension Using Nanoscale Encapsulated Phase-Change Materials for Heat Transfer
,”
Appl. Mater. Interfaces
,
2
, pp.
1685
1691
.10.1021/am100204b
6.
Lee
,
J.
, and
Crowe
,
C. T.
,
1982
, “
Scaling Laws for Metering the Flow of Gas-Particle Suspensions Through Venturis
,”
ASME J. Fluids Eng.
,
104
(
1
), pp.
88
91
.10.1115/1.3240862
7.
Wu
,
Z. S.
, and
Xie
,
F.
,
2007
, “
Optimization of Venturi Tube Design for Pipeline Pulverized Coal Flow Measurement
,”
J. Tsinghua University (Sci. & Tech.)
,
47
, pp.
666
669
.
8.
The Society of Thermophysical Properties
, 1994,
Thermophysical Properties
,
Youkendo
,
Tokyo
.
9.
Acrylonitrile Butadiene Styrene Data Sheet
,
2010
, www.Matweb.com
10.
JSME
,
1986
,
JSME Data Book, Heat Transfer
, 4th ed.,
Maruzen
,
Tokyo, Japan
.
11.
Goel
,
M.
,
Roy
,
S. K.
, and
Sengupta
,
S.
,
1994
, “
Laminar Forced Convection Heat Transfer in Microcapsulated Phase Change Material Suspensions
,”
Int. J. Heat Mass Transfer
,
37
, pp.
593
604
.10.1016/0017-9310(94)90131-7
12.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Introduction to Heat Transfer
, 5th ed.,
Wiley
,
New York
.
13.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and a Solid Surface
,”
Adv. Heat Transfer
,
13
, pp.
1
60
.10.1016/S0065-2717(08)70221-1
You do not currently have access to this content.