Based on combined particle image velocimetry (PIV) and numerical simulation, the flow and heat transfer characteristics of a single jet impinging on a dimpled surface for Dj/D = 0.318, 0.5, 1.045; δ/D = 0.1, 0.2, 0.3; Rej = 5000, 10,000, 23,000, were investigated for the first time. The distance between jet nozzle and plate was fixed and equal to H/D = 2. The results show that the flow structures of the single jet impingement with dimpled target surface can be summarized into three typical conceptual flow structures. Particularly, the third flow structure in the form of a large toroidal vortex bound up with the dimple is the result of the centrifugal force of the flow deflection at the stagnation region and spherical centrifugal force of the deep dimple surface. The heat transfer area increases when the dimple relative depth increases. For the cases of Dj/D = 0.318 and 0.5, the area increasing dominate the heat transfer process, and the average Nusselt number increases with the increasing of dimple relative depth. For the cases with Dj/D = 1.045, the local Nusselt number reduction dominate the heat transfer process, the average Nusselt number decreases with the increasing of dimple relative depth. The average Nusselt number of the Dj/D = 0.318 and 0.5 cases is larger than the baseline case, while those of the Dj/D = 1.045 cases are smaller than the baseline case. Furthermore, the correlative expressions of the local Nusselt number, stagnation points Nusselt number and average Nusselt number are obtained.

References

1.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
,
13
, pp.
1
60
.10.1016/S0065-2717(08)70221-1
2.
Hrycak
,
P.
,
1981
, “
Heat Transfer From a Row of Impinging Jets to Concave Cylindrical Surface
,”
Int. J. Heat Mass Transfer
,
24
, pp.
407
419
.10.1016/0017-9310(81)90048-X
3.
Hrycak
,
P.
,
1982
, “
Heat Transfer and Flow Characteristics of Jets Impinging on a Concave Hemispherical Plate
,”
Proceeding of International Heat Transfer Conference
, Vol.
3
, pp.
357
362
.
4.
Polat
,
S.
,
Huang
,
B.
,
Mujumdar
,
A. S.
, and
Douglas
,
W. J. M.
,
1989
, “
Numerical Flow and Heat Transfer Under Impinging Jets: A Review
,”
Annu. Rev. Numer. Fluid Mech. Heat Transfer
,
2
(
2
), pp.
157
197
.
5.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M. A.
, and
Button
,
B. L.
,
1992
, “
A Review of Heat Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
,
13
(
2
), pp.
106
115
.10.1016/0142-727X(92)90017-4
6.
Baughn
,
J. W.
, and
Shimizu
,
S.
,
1989
, “
Heat Transfer Measurements From a Surface With Uniform Heat Flux and an Impinging Jet
,”
ASME J. Heat Trans.
,
111
(
4
), pp.
1096
1098
.10.1115/1.3250776
7.
Baughn
,
J. W.
,
Hechanova
,
A. E.
, and
Yan
,
X.
,
1991
, “
An Experimental Study of Entrainment Effects on the Heat Transfer From a Flat Surface to a Heated Circular Impinging Jet
,”
ASME J. Heat Trans.
,
113
(
4
), pp.
1023
1025
.10.1115/1.2911197
8.
Cooper
,
D.
,
Jackson
,
D. C.
,
Launder
,
B. E.
, and
Liao
,
G. X.
,
1993
, “
Impinging Jet Studies for Turbulence Model Assessment—I. Flow-Field Experiments
,”
Int. J. Heat Mass Transfer
,
36
(
10
), pp.
2675
2684
.10.1016/S0017-9310(05)80204-2
9.
Nishino
,
K.
,
Samada
,
M.
,
Kasuya
,
K.
, and
Torii
,
K.
,
1996
, “
Turbulence Statistics in the Stagnation Region of an Axisymmetric Impinging Jet Flow
,”
Int. J. Heat Fluid Flow
,
17
(
3
), pp.
193
201
.10.1016/0142-727X(96)00040-9
10.
Lee
,
D. H.
,
Chung
,
Y. S.
, and
Kim
,
D. S.
,
1997
, “
Turbulent Flow and Heat Transfer Measurements on a Curved Surface With a Fully Developed Round Impinging Jet
,”
Int. J. Heat Fluid Flow
,
18
(
1
), pp.
160
169
.10.1016/S0142-727X(96)00136-1
11.
Lee
,
D. H.
,
Chung
,
Y. S.
, and
Kim
,
M. G.
,
1997
, “
Turbulent Heat Transfer From a Convex Hemispherical Surface to a Round Impinging Jet
,”
Int. J. Heat Mass Transfer
,
42
, pp.
1147
1156
.10.1016/S0017-9310(98)00174-4
12.
Lee
,
D. H.
,
Chung
,
Y. S.
, and
Won
,
S. Y.
,
1999
, “
The Effect of Concave Surface Curvature on Heat Transfer From a Fully Developed Round Impinging Jet
,”
Int. J. Heat Mass Transfer
,
42
, pp.
2489
2497
.10.1016/S0017-9310(98)00318-4
13.
Geers
,
L. F. G.
,
Tummers
,
M. J.
, and
Hanjalić
,
K.
,
2004
, “
Experimental Investigation of Impinging Jet Arrays
,”
Exp. Fluids
,
36
(
6
), pp.
946
958
.10.1007/s00348-004-0778-2
14.
Geers
,
L. F. G.
,
Tummers
,
M. J.
, and
Hanjalić
,
K.
,
2005
, “
Particle Imaging Velocimetry-Based Identification of Coherent Structures in Normally Impinging Multiple Jets
,”
Phys. Fluids
,
17
, p.
055105
.10.1063/1.1900804
15.
Geers
,
L. F. G.
,
Hanjalić
,
K.
, and
Tummers
,
M. J.
,
2006
, “
Wall Imprint of Turbulent Structures and Heat Transfer in Multiple Impinging Jet Arrays
,”
J. Fluid Mech.
,
546
, pp.
255
284
.10.1017/S002211200500710X
16.
Geers
,
L. F. G.
,
Tummers
,
M. J.
,
Bueninck
,
T. J.
, and
Hanjalić
,
K.
,
2008
, “
Heat Transfer Correlation for Hexagonal and In-Line Arrays of Impinging Jets
,”
Int. J. Heat Mass Transfer
,
51
(
21-22
), pp.
5389
5399
.10.1016/j.ijheatmasstransfer.2008.01.035
17.
Hadžiabdić
,
M.
, and
Hanjalić
,
K.
,
2008
, “
Vortical Structures and Heat Transfer in a Round Impinging Jet
,”
J. Fluid Mech.
,
596
, pp.
221
260
.10.1017/S002211200700955X
18.
Chang
,
H.
,
Zhang
,
D.
, and
Huang
,
T.
,
1997
, “
Impingement Heat Transfer From Rib Roughened Surface Within Arrays of Circular Jet: The Effect of the Relative Position of the Jet Hole to the Ribs
,” ASME Turbo Expo 1997, Orlando, FL, Paper No. GT1997-331.
19.
Xing
,
Y.
, and
Weigand
,
B.
,
2010
, “
Experimental Investigation of Impingement Heat Transfer on a Flat and Dimpled Plate With Different Crossflow Schemes
,”
Int. J. Heat Mass Transfer
,
53
(
19-20
), pp.
3874
3886
.10.1016/j.ijheatmasstransfer.2010.05.006
20.
Yamawaki
,
S.
,
Nakamata
,
C.
,
Imai
,
R.
,
Matsuno
,
S.
,
Yoshida
,
T.
,
Mimura
,
F.
, and
Kumada
,
M.
,
2003
, “
Cooling Performance of an Integrated Impingement and Pin Fin Cooling Configuration
,”
ASME
Turbo Expo 2003, Collocated With the 2003 International Joint Power Generation Conference (GT2003)
,
Atlanta, GA
,
Paper No
. GT2003-38215. 10.1115/GT2003-38215
21.
Lee
,
D. H.
,
Chung
,
Y. S.
, and
Ligrani
,
P. M.
,
2007
, “
Jet Impingement Cooling of Chips Equipped With Multiple Cylindrical Pedestal Fins
,”
ASME J. Electron. Packaging
,
129
(
3
), pp.
221
228
.10.1115/1.2753884
22.
Jeffers
,
N.
,
Punch
,
J.
,
Walsh
,
E.
, and
McLean
,
M.
,
2009
, “
Heat Transfer From Novel Target Surface Structures to a Normally Impinging, Submerged and Confined Water Jet
,”
ASME J. Therm. Sci. Eng. Appl.
,
1
(
3
), p.
031001
.10.1115/1.4000564
23.
Azad
,
G. S.
,
Huang
,
Y.
, and
Han
,
J. C.
,
2000
, “
Impingement Heat Transfer on Dimpled Surfaces Using a Transient Liquid Crystal Technique
,”
J. Thermophys. Heat Transfer
,
14
(
2
), pp.
186
193
.10.2514/2.6530
24.
Ekkad
,
S. V.
, and
Kontrovitz
,
D.
,
2002
, “
Jet Impingement Heat Transfer on Dimpled Target Surfaces
,”
Int. J. Heat Fluid Flow
,
23
(
1
), pp.
22
28
.10.1016/S0142-727X(01)00139-4
25.
Kanokjaruvijit
,
K.
, and
Martinez-Botas
,
R. F.
,
2005
, “
Parametric Effects on Heat Transfer of Impingement on Dimpled Surface
,”
ASME J. Turbomach.
,
127
(
2
), pp.
287
296
.10.1115/1.1791292
26.
Chang
,
S. W.
,
Jan
,
Y. J.
, and
Chang
,
S. F.
,
2006
, “
Heat Transfer of Impinging Jet-Array Over Convex-Dimpled Surface
,”
Int. J. Heat Mass Transfer
,
49
(
17-18
), pp.
3045
3059
.10.1016/j.ijheatmasstransfer.2006.02.030
27.
Chang
,
S. W.
,
Chiou
,
S. F.
, and
Chang
,
S. F.
,
2007
, “
Heat Transfer of Impinging Jet Array Over Concave-Dimpled Surface With Applications to Cooling of Electronic Chipsets
,”
Exp. Therm. Fluid Sci.
,
31
(
7
), pp.
625
640
.10.1016/j.expthermflusci.2006.06.008
28.
Kanokjaruvijit
,
K.
, and
Martinez-Botas
,
R. F.
,
2008
, “
Heat Transfer and Pressure Investigation of Dimple Impingement
,”
ASME J. Turbomach.
,
130
(1)
, p.
011003
.10.1115/1.2220048
29.
Chang
,
S. W.
, and
Liou
,
H. F.
,
2009
, “
Heat Transfer of Impinging Jet-Array Onto Concave-and Convex-Dimpled Surfaces With Effusion
,”
Int. J. Heat Mass Transfer
,
52
(
19-20
), pp.
4484
4499
.10.1016/j.ijheatmasstransfer.2009.03.050
30.
Terekhov
,
V. I.
,
Kalinina
,
S. V.
,
Mshvidobadze
,
Y. M.
, and
Sharov
,
K. A.
,
2009
, “
Impingement of an Impact Jet Onto a Spherical Cavity. Flow Structure and Heat Transfer
,”
Int. J. Heat Mass Transfer
,
52
(
11-12
), pp.
2498
2506
.10.1016/j.ijheatmasstransfer.2009.01.018
31.
Kanokjaruvijit
,
K.
, and
Martinez-Botas
,
R. F.
,
2010
, “
Heat Transfer Correlations of Perpendicularly Impinging Jets on a Hemispherical-Dimpled Surface
,”
Int. J. Heat Mass Transfer
,
53
(
15-16
), pp.
3045
3056
.10.1016/j.ijheatmasstransfer.2010.03.023
32.
Yan
,
X.
,
Baughn
,
J. W.
, and
Mesbah
,
M.
,
1992
, “
The Effect of Reynolds Number on the Heat Transfer Distribution From a Flat Plate to an Impinging Jet
,”
ASME Heat Transfer Div.
, Vol.
226
, pp.
1
7
.
33.
Lee
,
J.
, and
Lee
,
S. J.
,
1999
, “
Stagnation Region Heat Transfer of a Turbulent Axisymmetric Jet Impingement
,”
Exp. Heat Transfer
,
12
(
2
), pp.
137
156
.10.1080/089161599269753
34.
Terekhov
,
V. I.
,
Barsanov
,
V. L.
,
Kalinina
,
S. V.
, and
Mshvidobadze
,
Y. M.
,
2006
, “
Experimental Study of Flow Structure and Heat Transfer Under a Jet Flow Past a Spherical-Cavity Obstacle
,”
J. Eng. Phys. Thermophys.
,
79
(
4
), pp.
657
665
.10.1007/s10891-006-0150-x
35.
Terekhov
,
V. I.
, and
Kalinina
,
S. V.
,
2011
, “
Heat Transfer Suppression During Impact Jet Interaction With Hemispherical Cavity
,”
Tech. Phys. Lett.
,
37
(
10
), pp.
984
987
.10.1134/S1063785011100270
You do not currently have access to this content.