A nanofluid model is simulated by molecular dynamics (MD) approach. The simulated nanofluid has been a dispersion of single walled carbon nanotubes (CNT) in liquid water. Intermolecular force in liquid water has been determined using TIP4P model, and, interatomic force due to carbon nanotube has been calculated by the simplified form of Brenner's potential. However, interaction between molecules of water and atoms of carbon nanotube is modeled by Lennard-Jones potential. The Green–Kubo method is employed to predict the effective thermal conductivity of the nanofluid, and, effect of temperature is sought. The obtained results are checked against experimental data, and, good agreement between them is observed.

References

1.
Chandrasekar
,
M.
, and
Suresh
,
S.
,
2009
, “
A Review on the Mechanisms of Heat Transport in Nanofluids
,”
Heat Transfer Eng.
,
30
(
14
), pp.
1136
1150
.10.1080/01457630902972744
2.
Das
,
S. K.
,
Choi
,
S. U. S.
,
Yu
,
W.
, and
Pradeep
,
T.
,
2007
,
Nanofluids: Science and Technology
,
John Wiley & Sons Inc.
,
Hoboken, NJ
.
3.
Masuda
,
H.
,
Ebata
,
A.
,
Teramae
,
K.
, and
Hishinuma
,
N.
,
1993
, “
Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersion of Al2O3, SiO2, TiO2 Ultra-Fine Particles)
,”
Netsu Bussei
,
7
(
4
), pp.
227
233
(in Japanese).10.2963/jjtp.7.227
4.
Lee
,
S.
,
Choi
,
S. U. S.
,
Li
,
S.
, and
Eastman
,
J. A.
,
1999
, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
280
289
.10.1115/1.2825978
5.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
,
2005
, “
Enhanced Thermal Conductivity of TiO2-Water Based Nanofluids
,”
Int. J. Therm. Sci.
,
44
, pp.
367
373
.10.1016/j.ijthermalsci.2004.12.005
6.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
,
2003
, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
,
125
(
4
), pp.
567
574
.10.1115/1.1571080
7.
Chon
,
C. H.
,
Kihm
,
K. D.
,
Lee
,
S. P.
, and
Choi
,
S. U. S.
,
2005
, “
Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement
,”
Appl. Phys. Lett.
,
87
, p.
153107
.10.1063/1.2093936
8.
Li
,
C. H.
, and
Peterson
,
G. P.
,
2006
, “
Experimental Investigation of Temperature and Volume Fraction Variations on the Effective Thermal Conductivity of Nanoparticle Suspensions (Nanofluids)
,”
J. Appl. Phys.
,
99
, p.
084314
.10.1063/1.2191571
9.
Ding
,
Y.
,
Alias
,
H.
,
Wen
,
D.
, and
Williams
,
R. A.
,
2006
, “
Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids)
,”
Int. J. Heat Mass Transfer
,
49
, pp.
240
250
.10.1016/j.ijheatmasstransfer.2005.07.009
10.
Zhang
,
Z. M.
,
2007
,
Nano/Microscale Heat Transfer
,
McGraw-Hill
,
New York
.
11.
Minkowycz
,
W. J.
, and
Sparrow
,
E. M.
,
2000
,
Numerical Heat Transfer
, Vol.
2
,
Taylor & Francis
,
New York
, pp.
189
202
.
12.
Sarkar
,
S.
, and
Selvam
,
R. P.
,
2007
, “
Thermal Conductivity Computation of Nanofluids by Equilibrium Molecular Dynamics Simulation: Nanoparticle Loading and Temperature Effect
,”
Mater. Res. Soc. Symp. Proc.
,
1022
, pp.
II01
II08
.10.1557/PROC-1022-II01-08
13.
Sankar
,
N.
,
Mathew
,
N.
, and
Sobhan
,
C. B.
,
2008
, “Molecular Dynamics Modeling of Thermal Conductivity Enhancement in Metal Nanoparticle Suspensions,”
Int. Comm. Heat Mass Transfer
,
35
(
7
), pp.
867
872
.10.1016/j.icheatmasstransfer.2008.03.006
14.
Rapaport
,
D. C.
,
2004
,
The Art of Molecular Dynamics Simulation
, 3rd ed.,
Cambridge University Press
,
United Kingdom
.
15.
Walther
,
J. H.
,
Jaffe
,
R.
,
Halicioglu
,
T.
, and
Koumoutsakos
,
P.
,
2001
, “
Carbon Nanotube in Water: Structural Characteristics and Energetics
,”
J. Phys. Chem. B
,
105
, pp.
9980
9987
.10.1021/jp011344u
16.
McGaughey
,
A. J. H.
, and
Kaviany
,
M.
,
2006
, “
Phonon Transport in Molecular Dynamics Simulations: Formation and Thermal Conductivity Prediction
,”
Advances in Heat Transfer
,
G. A.
Green
,
J. P.
Hartnett
,
A.
Bar-Cohen
,
Y. I.
Cho
, and
T. F.
Irvine
, eds.,
Elsevier
,
Amsterdam
, pp.
169
248
.
You do not currently have access to this content.