Sectional oblique fins are employed in contrast to continuous fins in order to modulate flow in microchannel heat sink. The breakage of continuous fin into oblique sections leads to the reinitialization of both hydrodynamic and thermal boundary layers at the leading edge of each oblique fin, effectively reducing the thickness of boundary layer. This regeneration of entrance effect causes the flow to be always in a developing state thus resulting in better heat transfer. In addition, the presence of smaller oblique channels diverts a small fraction of flow into the adjacent main channels. The secondary flows thus created improve fluid mixing which serves to further enhance the heat transfer. Detailed numerical study on the fluid flow and heat transfer of this passive heat transfer enhancement technique provides insight to the local hydrodynamics and thermal development along the oblique fin. The uniquely skewed hydrodynamic and thermal profiles are identified as the key to the highly augmented and uniform heat transfer performance across the heat sink. The associated pressure drop penalty is much smaller than the achieved heat transfer enhancement, rendering it as an effective heat transfer enhancement scheme for single phase microchannel heat sink.

References

1.
Kandlikar
,
S. G.
,
2005
, “
High Flux Heat Removal With Microchannels—A Roadmap of Challenges and Opportunities
,”
Heat Transfer Eng.
,
26
(
8
), pp.
5
14
.10.1080/01457630591003655
2.
Webb
,
R. L.
, and
Kim
,
N. H.
,
2005
,
Principles of Enhanced Heat Transfer
,
Taylor & Francis
,
New York
, pp. 19–20,
100
–109.
3.
Li
,
J.
, and
Peterson
,
G. P.
,
2007
, “
3-Dimensional Numerical Optimization of Silicon-Based High Performance Parallel Microchannel Heat Sink With Liquid Flow
,”
Int. J. Heat Mass Transfer
,
50
(
15
16
), pp.
2895
2904
.10.1016/j.ijheatmasstransfer.2007.01.019
4.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electr. Dev. Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
5.
Liu
,
D.
, and
Garimella
,
S. V.
,
2005
, “
Analysis and Optimization of the Thermal Performance of Microchannel Heat Sinks
,”
Int. J. Numer. Methods Heat Fluid Flow
,
15
(
1
), pp.
7
26
.10.1108/09615530510571921
6.
Bejan
,
A.
, and
Errera
,
M. R.
,
2000
, “
Convective Trees of Fluid Channels for Volumetric Cooling
,”
Int. J. Heat Mass Transfer
,
43
, pp.
3105
3118
.10.1016/S0017-9310(99)00353-1
7.
Pence
,
D. V.
,
2003
, “
Reduced Pumping Power and Wall Temperature in Microchannel Heat Sinks With Fractal-Like Branching Channel Networks
,”
Microscale Thermophys. Eng.
,
6
(
4
), pp.
319
330
.10.1080/10893950290098359
8.
Chen
,
Y.
, and
Cheng
,
P.
,
2002
, “
Heat Transfer and Pressure Drop in Fractal Tree-Shaped Microchannel Nets
,”
Int. J. Heat Mass Transfer
,
45
, pp.
2643
2648
.10.1016/S0017-9310(02)00013-3
9.
Alharbi
,
A. Y.
,
Pence
,
D. V.
, and
Cullion
,
R. N.
,
2003
, “
Fluid Flow Through Microscale Fractal-Like Branching Channel Networks
,”
ASME J. Fluids Eng.
,
125
(
6
), pp
1051
1057
.10.1115/1.1625684
10.
Alharbi
,
A. Y.
,
Pence
,
D. V.
, and
Cullion
,
R. N.
,
2004
, “
Thermal Characteristics of Microscale Fractal-Like Branching Channels
,”
ASME J. Heat Transfer
,
126
(
5
), pp.
744
752
.10.1115/1.1795236
11.
Lee
,
P. S.
, and
Garimella
,
S. V.
,
2005
, “
Hot-Spot Thermal Management With Flow Modulation in a Microchannel Heat Sink
,”
Proceedings of 2005
ASME
International Mechanical Engineering Congress & Exposition, Paper No. IMECE2005-79562.10.1115/IMECE2005-79562
12.
Xu
,
J. L.
,
Gan
,
Y. H.
,
Zhang
,
D. C.
, and
Li
,
X. H.
,
2005
, “
Microscale Heat Transfer Enhancement Using Thermal Boundary Layer Redeveloping Concept
,”
Int. J. Heat Mass Transfer
,
48
, pp.
1662
1674
.10.1016/j.ijheatmasstransfer.2004.12.008
13.
Xu
,
J. L.
,
Song
,
Y. X.
,
Zhang
,
W.
,
Zhang
,
H.
, and
Gan
,
Y. H.
,
2008
, “
Numerical Simulations of Interrupted and Conventional Microchannel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
51
(
25
26
), pp.
5906
5917
.10.1016/j.ijheatmasstransfer.2008.05.003
14.
Qu
,
W.
,
2008
, “
Comparison of Thermal-Hydraulic Performance of Singe-Phase Micro-Pin-Fin and Micro-Channel Heat Sinks
,”
11th
IEEE
Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (I-THERM), pp.
105
112
.10.1109/ITHERM.2008.4544260
15.
Sui
,
Y.
,
Teo
,
C. J.
,
Lee
,
P. S.
,
Chew
,
Y. T.
, and
Shu
,
C.
,
2010
, “
Fluid Flow and Heat Transfer in Wavy Microchannels
,”
Int. J. Heat Mass Transfer
,
53
, pp.
2760
2772
.10.1016/j.ijheatmasstransfer.2010.02.022
16.
Harpole
,
G. M.
, and
Eninger
,
J. E.
,
1991
, “
Micro-Channel Heat Exchanger Optimization
,”
Proceeding of 7th
IEEE
SEMI-THERM Symposium, pp.
59
63
.10.1109/STHERM.1991.152913
17.
Copeland
,
D.
,
Behnia
,
M.
, and
Nakayama
,
W.
,
1997
, “
Manifold Microchannel Heat Sinks: Isothermal Analysis
,”
IEEE Trans. Compon., Packag., Manuf. Technol., Part A
,
20
(
2
), pp.
96
102
.10.1109/95.588554
18.
Ryu
,
J. H.
,
Choi
,
D. H.
, and
Kim
,
S. J.
,
2003
, “
Three-Dimensional Numerical Optimization of a Manifold Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
46
, pp.
1553
1562
.10.1016/S0017-9310(02)00443-X
19.
Kandlikar
,
S. G.
, and
Upadhye
,
H. R.
,
2005
, “
Extending the Heat Flux Limit With Enhanced Microchannels in Direct Single-Phase Cooling of Computer Chips
,”
21st
IEEE
SEMI-THERM Symposium.10.1109/STHERM.2005.1412152
20.
Chandratilleke
,
T. T.
,
Jagannatha
,
D.
, and
Narayanaswamy
,
R.
,
2010
, “
Heat Transfer Enhancement in Microchannels With Cross-Flow Synthetic Jets
,”
Int. J. Therm. Sci.
,
49
, pp.
504
513
.10.1016/j.ijthermalsci.2009.09.004
21.
Chen
,
Y.
, and
Cheng
,
P.
,
2005
, “
An Experimental Investigation on the Thermal Efficiency of Fractal Tree-Like Microchannel Nets
,”
Int. J. Heat Mass Transfer
,
32
, pp.
931
938
.10.1016/j.icheatmasstransfer.2005.02.001
22.
Colgan
,
E. G.
,
Furman
,
B.
,
Gaynes
,
M.
,
Graham
,
W. S.
,
LaBianca
,
N. C.
,
Magerlein
,
J. H.
,
Polastre
,
R. J.
,
Rothwell
,
M. B.
,
Bezama
,
R. J.
,
Choudhary
,
R.
,
Marston
,
K. C.
,
Toy
,
H.
,
Wakil
,
J.
,
Zitz
,
J. A.
, and
Schmidt
,
R. R.
,
2007
, “
A Practical Implementation of Silicon Microchannel Coolers for High Power Chips
,”
IEEE Trans. Compon. Packag. Technol.
,
30
(
2
), pp.
218
225
.10.1109/TCAPT.2007.897977
23.
Lee
,
Y. J.
,
Lee
,
P. S.
, and
Chou
,
S. K.
,
2009
, “
Enhanced Microchannel Heat Sinks Using Oblique Fins
,”
Proceeding of 2009
ASME
InterPACK, Paper No. IPACK2009-89059.10.1115/InterPACK2009-89059
24.
Lee
,
Y. J.
,
Lee
,
P. S.
, and
Chou
,
S. K.
,
2012
, “
Enhanced Thermal Transport in Microchannel Using Oblique Fins
,”
ASME J. Heat Transfer
,
134
(
10
), p. 101901.10.1115/1.4006843
25.
FLUENT 6.3 User's Guide, 2006, Fluent Inc., Lebanon, NH.
26.
Lee
,
P. S.
, and
Garimella
,
S. V.
,
2006
, “
Thermally Developing Flow and Heat Transfer in Rectangular Microchannels of Different Aspect Ratios
,”
Int. J. Heat Mass Transfer
,
49
, pp.
3060
3067
.10.1016/j.ijheatmasstransfer.2006.02.011
27.
Incropera
,
F. P.
,
1999
,
Liquid Cooling of Electronic Devices by Single-Phase Convection
,
Wiley
,
New York
, pp.
262
263
.
28.
Lee
,
P. S.
,
Garimella
,
S. V.
, and
Liu
,
D.
,
2005
, “
Investigation of Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
48
, pp.
1688
1704
.10.1016/j.ijheatmasstransfer.2004.11.019
29.
Douglas
,
J. F.
,
Gasiorek
,
J. M.
,
Swaffield
,
J. A.
, and
Jack
,
L. B.
,
2005
,
Fluid Mechanics
, 5th ed.,
Pearson
, Essex, UK, pp.
388
–391.
30.
Kim
,
S. J.
,
Kim
,
D.
, and
Oh
,
H. H.
,
2008
, “
Comparison of Fluid Flow and Thermal Characteristics of Plate-Fin and Pin-Fin Heat Sinks Subjects to a Parallel Flow
,”
Heat Transfer Eng.
,
29
(
2
), pp.
169
177
.10.1080/01457630701686669
You do not currently have access to this content.