An experimental investigation of an oscillating heat pipe (OHP) with a superhydrophobic inner surface coated with a superhydrophobic self-assembled monolayer (SAM) of n-octadecyl mercaptan was conducted. The experimental results show that the oscillating motion in an OHP with a superhydrophobic surface can be generated and the OHP can function well. This is very different from the conventional wicked heat pipe, which cannot function if the inner surface is hydrophobic. The functionality of a superhydrophobic OHP is not sensitive to the wetting condition of the inner surface of the OHP. The investigation results in a better understating of heat transfer mechanism occurring in an OHP.
Issue Section:
Technical Briefs
References
1.
Wilson
, C.
, Borgmeyer
, B.
, and Winholtz
, R. A.
, 2008, “Visual Observation of Oscillating Heat Pipes Using Neutron Radiography
,” J. Thermophys. Heat Transfer
, 22
(3
), pp. 366
–372
.2.
Khandekar
, S.
, Charoensawan
, P.
, and Groll
, M.
, 2003, “Closed Loop Pulsating Heat Pipes Part B: Visualization and Semi-Empirical Modeling
,” Appl. Therm. Eng.
, 23
(3
), pp. 366
–372
.3.
Ma
, H. B.
, Borgmeyer
, B.
, and Cheng
, P.
, 2008, “Heat Transport Capability in an Oscillating Heat Pipe
,” ASME J. Heat Transfer
, 130
(8
), p. 081501
.4.
Rittidech
, S.
, Terdtoon
, P.
, and Murakami
, M.
, 2003, “Correlation to Predict Heat Transfer Characteristics of a Closed-End Oscillating Heat Pipe at Normal Operating Condition
,” Appl. Therm. Eng.
, 23
(4
), pp. 497
–510
.5.
Qu
, W.
, and Ma
, H.
, 2007, “Theoretical Analysis of Startup of a Pulsating Heat Pipe
,” Int. J. Heat Mass Transfer
, 50
(11–12
), pp. 2309
–2316
.6.
Charoensawan
, P.
, and Terdtoon
, P.
, 2008, “Thermal Performance of Horizontal Closed-Loop Oscillating Heat Pipes
,” Appl. Therm. Eng.
, 28
(5–6
), pp. 460
–466
.7.
Ji
, Y.
, Wilson
, C.
, Chen
, H.-H.
, and Ma
, H.
, 2011, “Particle Shape Effect on Heat Transfer Performance in an Oscillating Heat Pipe
,” Nanoscale Res. Lett.
, 6
(1
), p. 296
.8.
Ji
, Y.
, Ma
, H.
, Su
, F.
, and Wang
, G.
, 2011, “Particle Size Effect on Heat Transfer Performance in an Oscillating Heat Pipe
,” Exp. Therm. Fluid Sci.
, 35
(4
), pp. 724
–727
.9.
Ma
, H. B.
, Wilson
, C.
, Yu
, Q.
, Park
, K.
, Choi
, U. S.
, and Tirumala
, M.
, 2006, “An Experimental Investigation of Heat Transport Capability in a Nanofluid Oscillating Heat Pipe
,” ASME J. Heat Transfer
, 128
(11
), pp. 1213
–1216
.10.
Lin
, Y.
, Kang
, S.
, and Chen
, H.
, 2008, “Effect of Silver Nano-Fluid on Pulsating Heat Pipe Thermal Performance
,” Appl. Therm. Eng.
, 28
(11–12
), pp. 1312
–1317
.11.
Qu
, J.
, Wu
, H.
, and Cheng
, P.
, 2010, “Thermal Performance of an Oscillating Heat Pipe With Al2O3–Water Nanofluids
,” Int. Commun. Heat Mass Transfer
, 37
(3
), pp. 366
–372
.12.
Akachi
, H.
, 1990, “Structure of a Heat Pipe
,” U. S. Patent No. 4921041.13.
Rose
, J. W.
, 2002, “Dropwise Condensation Theory and Experiment: A Review
,” Proc. Inst. Mech. Eng., Part A
, 216
(2
), pp. 115
–128
.14.
Vemuri
, S.
, and Kim
, K. J.
, 2006, “An Experimental and Theoretical Study on the Concept of Dropwise Condensation
,” Int. J. Heat Mass Transfer
, 49
(3–4
), pp. 649
–657
.15.
Lan
, Z.
, Ma
, X.
, and Zhou
, X.
, 2009, “Theoretical Study of Dropwise Condensation Heat Transfer: Effect of the Liquid-Solid Surface Free Energy Difference
,” J. Enhanced Heat Transfer
, 16
(1
), pp. 61
–71
.16.
Mei
, M.
, Yu
, B.
, Zou
, M.
, and Luo
, L.
, 2011, “A Numerical Study on Growth Mechanism of Dropwise Condensation
,” Int. J. Heat Mass Transfer
, 54
(9–10
), pp. 2004
–2013
.17.
Sikarwar
, B. S.
, Battoo
, N. K.
, Khandekar
, S.
, and Muralidhar
, K.
, 2011, “Dropwise Condensation Underneath Chemically Textured Surfaces: Simulation and Experiments
,” ASME J. Heat Transfer
, 133
(2
), p. 021501
.18.
Qian
, B.
, and Shen
, Z.
, 2006, “Super-Hydrophobic CuO Nanoflowers by Controlled Surface Oxidation on Copper
,” Wuji Cailiao Xuebao/J. Inorg. Mater.
, 21
(3
), pp. 747
–752
.19.
Peterson
, G. P.
, 1994, An Introduction to Heat Pipes
, Wiley
, New York
, p. 356
.Copyright © 2012
by American Society of Mechanical Engineers
You do not currently have access to this content.