The thermophysical properties pertaining to the impingement of a nano-droplet onto a solid surface were investigated using molecular dynamics (MD) simulations. The MD simulations used data collection for an entire group of molecules to investigate the propagation of energy in the system. Simulations of a moving nano-droplet colliding with a stationary solid were performed to determine the heat transfer between the droplet and the surface. It was discovered that the droplet-substrate collision caused the droplet temperature to rise significantly upon impact. The substrate also experiences a temperature jump with a slower response time. A theoretical relation for the substrate temperature jump is also developed that shows reasonable agreement with the MD simulations for small droplet diameters. Increasing the diameter of the droplet from 2.0 nm to 4.5 nm showed a gain in the total added substrate kinetic energy. Varying the initial speed of the droplet from 10 m/s to 40 m/s showed no significant difference in the applied kinetic energy onto the substrate, suggesting that the acceleration of the droplet toward the surface due to intermolecular interactions produces an impact speed relatively independent of the initial droplet bulk speed. These trends were also reflected in a thermodynamically based simple theoretical prediction of collision energy, which was shown to be accurate for droplet diameters up to 3.5 nm. The collision energy was estimated to be on the order of 1–10 eV, and the applied heat flux is on the order of GW/m2.

References

1.
Horacek
,
B.
,
Kiger
,
K. T.
, and
Kim
,
J.
, 2005, “
Single Nozzle Spray Cooling Heat Transfer Mechanisms
,”
Int. J. Heat Mass Transfer
,
48
, pp.
1425
1438
.
2.
Kim
,
J.
, 2007, “
Spray Cooling Heat Transfer: The State of the Art
,”
Int. J. Heat Fluid Flow
,
28
, pp.
753
767
.
3.
Mao
,
L.-F.
, 2010, “
The Quantum Size Effects on the Surface Potential of Nanocrystalline Silicon Thin Film Transistors
,”
Thin Solid Films
,
518
, pp.
3396
3401
.
4.
Maruyama
,
S.
,
Kurashige
,
T.
,
Matsumoto
,
S.
,
Yamaguchi
,
Y.
, and
Kimura
,
T.
, 1998, “
Liquid Droplet in Contact With a Solid Surface
,”
Microscale Thermophys. Eng.
,
2
, pp.
49
62
.
5.
Hong
,
S. D.
,
Ha
,
M. Y.
, and
Balachandar
,
S.
, 2009, “
Static and Dynamic Contact Angles of Water Droplet on a Solid Surface Using Molecular Dynamics Simulation
,”
J. Colloid Interface Sci.
,
339
(
1
), pp.
187
195
.
6.
Jorgensen
,
W. L.
,
Chandrasekhar
,
J.
,
Madura
,
J. D.
,
Impey
,
R. W.
, and
Klein
,
M. L.
, 1983, “
Comparison of Simple Potential Functions for Simulating Liquid Water
,”
J. Chem. Phys.
,
79
, pp.
926
935
.
7.
Kimura
,
T.
, and
Maruyama
,
S.
, 2002, “
Molecular Dynamics Simulation of Heterogeneous Nucleation of a Liquid Droplet on a Solid Surface
,”
Microscale Thermophys. Eng.
,
6
(
1
), pp.
3
13
.
8.
Landry
,
E. S.
,
Mikkilineni
,
S.
,
Paharia
,
M.
, and
McGaughey
,
A. J. H.
, 2007, “
Droplet Evaporation: A Molecular Dynamics Investigation
,”
J. Appl. Phys.
,
102
(
12
), p.
124301
.
9.
Yang
,
T. H.
,
Pan
,
C.
, and
Hsieh
,
H. M.
, 2008, “
Molecular Dynamics Simulation of Interactions Between a Nano Water Droplet and an Isothermal Platinum Surface
,”
3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems
, pp.
1129
1133
.
10.
Jorgensen
,
W.
,
Chandrasekhar
,
J.
,
Madura
,
J.
,
Impey
,
R.
, and
Klein
,
M.
, 1983, “
Comparison of Simple Potential Functions for Simulating Liquid Water
,”
J. Chem. Phys.
,
79
(
2
), pp.
926
935
.
11.
Spohr
,
E.
, 1989, “
Computer Simulation of the Water/Platinum Interface
,”
J. Phys. Chem.
,
93
, pp.
6171
6180
.
12.
Shimizu
,
J.
,
Ohmura
,
E.
,
Kobayashi
,
Y.
,
Kiyoshima
,
S.
, and
Eda
,
H.
, 2007, “
Molecular Dynamics Simulation of Flattening Process of a High-Temperature, High-Speed Droplet: Influence of Impact Parameters
,”
J. Therm. Spray Tech.
,
16
(5-6)
, pp.
722
728
.
13.
Maroo
,
S. C.
, and
Chung
,
J. N.
, 2009, “
Nano-Droplet Impact on a Homogenous Surface Using Molecular Dynamics
,”
2008 Proceedings of 3rd Energy Nanotechnology International Conference, ENIC 2008
, pp.
113
121
.
14.
Fujimoto
,
H.
,
Doi
,
R.
,
Ogihara
,
T.
,
Hama
,
T.
, and
Takuda
,
H.
, 2010, “
Experimental Study on Oblique Collisions of Water Droplets With Hot Solid
,” 2010 ASME IMECE, ASME, pp. IMECE2010–37625.
15.
Tyrrell
,
J.
, and
Attard
,
P.
, 2001, “
Images of Nanobubbles on Hydrophobic Surfaces and Their Interactions
,”
Phys. Rev. Lett.
,
87
(
17
), pp.
1761041
1761044
.
16.
Ishida
,
N.
,
Inoue
,
T.
,
Miyahara
,
M.
, and
Higashitani
,
K.
, 2000, “
Nano Bubbles on a Hydrophobic Surface in Water Observed by Tapping-Mode Atomic Force Microscopy
,”
Langmuir
,
16
(
16
), pp.
6377
6380
.
17.
Wemhoff
,
A. P.
, and
Haas
,
G.
, 2009, “
Molecular Dynamics Problem Initialization and Statistics Collection for Arbitrary Geometries
,”
ASME Paper No. HT-2009-88072
.
18.
Swope
,
W. C.
,
Andersen
,
H. C.
,
Berens
,
P.
, and
Wilson
,
K.
, 1982, “
A Computer Simulation Method for the Calculation of Equilibration Constants for the Formation of Physical Clusters of Molecules: Application to Small Water Clusters
,”
J. Chem. Phys.
,
76
, pp.
637
649
.
19.
Stoddard
,
S. D.
, and
Ford
,
J.
, 1973, “
Numerical Experiments on the Stochastic Behavior of a Lennard-Jones Gas System
,”
Phys. Rev. A (Gen. Phys.)
,
8
, pp.
1504
1512
.
20.
Andersen
,
H.
, 1980, “
Molecular Dynamics Simulations at Constant Pressure And/Or Temperature
,”
J. Chem. Phys.
,
72
(
4
), pp.
2384
2393
.
21.
Yan
,
Y. D.
,
Sun
,
T.
,
Dong
,
S.
,
Luo
,
X. C.
, and
Liang
,
Y. C.
, 2006, “
Molecular Dynamics Simulation of Processing Using AFM Pin Tool
,”
Appl. Surf. Sci.
,
252
(
20
), pp.
7523
7531
.
22.
Carey
,
V.
, and
Wemhoff
,
A.
, 2004, “
Relationships Among Liquid-Vapor Interfacial Region Properties: Predictions of a Thermodynamic Model
,”
Int. J. Thermophys.
,
25
(
3
), pp.
753
786
.
23.
Carey
,
V. P.
, and
Wemhoff
,
A. P.
, 2006, “
Disjoining Pressure Effects in Ultra-Thin Liquid Films in Micropassages—Comparison of Thermodynamic Theory With Predictions of Molecular Dynamics Simulations
,”
ASME Trans. J. Heat Transfer
,
128
, pp.
1276
1284
.
You do not currently have access to this content.