This study shows the transient characteristics of the pool boiling curves using nanofluid as the boiling fluid. This time-dependency is in sharp contrast to a unique steady-state pool boiling curve that is typically obtained for a pure fluid. Past nanofluids research has provided interesting information about the thermal characteristics for this potentially promising cooling fluid. Results from these studies have shown some extraordinary critical heat flux (CHF) values and thermal conductivity enhancement that is yet to be explained by existing theories and correlations. The nature of the pool boiling curve for a nanofluid is dependent on the nanoparticle concentration in the base fluid. Higher concentration nanofluids show a perceptible degradation in the boiling heat transfer (BHT) coefficient but have exhibited an enhanced CHF value (up to ∼80%) when compared to the CHF value of the base fluid (water). Another key observation has been in the significant deposition of nanoparticles on the heater surface. This fouling of the heater surface by nanoparticles is widely viewed as a main contributor that modifies the pool boiling curve of the base liquid. The deposition of the nanoparticles on the heater surface is dynamic and this in turn makes the nanofluid pool boiling curve exhibit transient characteristics.

References

1.
Eastman
,
J. A.
,
Choi
,
U. S.
, and
Li
,
S.
, 1997, “
Enhanced Thermal Conductivity Through the Development of Nanofluids
,”
Symposium of Nanophase and Nanocomposite Materials II
, Materials Research Society, Boston, Vol.
457
, pp.
3
11
.
2.
Choi
,
U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
, and
Grulke
,
E. A.
, 2001, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
,
79
, p.
2252
.
3.
Eastman
,
J. A.
,
Choi
,
U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
, 2001, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
,
78
, p.
718
.
4.
You
,
S. M.
,
Kim
,
J. H.
, and
Kim
,
K. H.
, 2003, “
Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
83
(
16
), pp.
3374
3376
.
5.
Yang
,
Y. M.
, and
Maa
,
J. R.
, 1984, “
Boiling of Suspension of Solid Particles in Water, Pool Boiling Characteristics of Nano-Fluids
,”
Int. J. Heat Mass Transfer
,
27
(
1
), pp.
145
147
.
6.
Vassallo
,
P.
,
Kumar
,
R.
, and
D’Amico
,
S.
, 2003, “
Pool Boiling Heat Transfer Experiments in Silica-Water Nano-Fluids
,”
Int. J. Heat Mass Transfer
,
47
, pp.
407
411
.
7.
Das
,
S. K.
,
Putra
,
N.
, and
Roetzel
,
W.
, 2003, “
Pool Boiling Characteristics of Nano-Fluids
,”
Int. J. Heat Mass Transfer
,
46
, pp.
851
862
.
8.
Das
,
S. K.
,
Putra
,
N.
, and
Roetzel
,
W.
, 2003, “
Pool Boiling of Nano-Fluids on Horizontal Narrow Tubes
,”
Int. J. Multiphase Flow
,
29
, pp.
1237
1247
.
9.
Bang
,
I. C.
, and
Chang
,
S. H.
, 2005, “
Boiling Heat Transfer Performance and Phenomena of Al2O3-Water Nano-Fluids From a Plain Surface in a Pool
,”
Int. J. Heat Mass Transfer
,
48
, pp.
2407
2419
.
10.
Wen
,
D.
, and
Ding
,
Y.
, 2005, “
Experimental Investigation Into the Pool Boiling Heat Transfer of Aqueous Based γ-Alumina Nanofluids
,”
J. Nanoparticle Res.
,
7
, pp.
265
274
.
11.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
, 2007, “
Surface Wettability Change During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
50
, pp.
4105
4116
.
12.
Sefiane
,
K.
, 2006, “
On the Role of Structural Disjoining Pressure and Contact Line Pinning in Critical Heat Flux Enhancement During Boiling of Nanofluids
,”
Appl. Phys. Lett.
,
89
, p.
044106
.
13.
Kim
,
H.
, and
Kim
,
M. H.
, 2007, “
Experimental Study of the Characteristics and Mechanism of Pool Boiling CHF Enhancement Using Nanofluids
,”
Heat Mass Transfer
,
45
(
7
), pp.
991
998
.
14.
Kim
,
J. H.
,
Kim
,
K. H.
, and
You
,
S. M.
, 2004, “
Pool Boiling Heat Transfer in Saturated Nanofluids
,”
Proceedings of IMECE: ASME International Mechanical Engineering Congress and RD&D Expo
, Anaheim, CA.
15.
Moreno
,
G.
,
Oldenburg
,
S. J.
, and
You
,
S. M.
, 2005, “
Pool Boiling Heat Transfer of Alumina-Water, Zinc Oxide-Water and Alumina-Water+Ethylene Glycol Nanofluids
,”
ASME Conference Proceedings
, San Francisco, CA, pp.
625
632
.
16.
Pioro
,
I. L.
,
Rohsenow
,
W.
, and
Doerffer
,
S. S.
, 2004, “
Nucleate Pool-Boiling Heat Transfer. I: Review of Parametric Effects of Boiling Surface
,”
Int. J. Heat Mass Transfer
,
47
(
23
), pp.
5033
5044
.
17.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
18.
Kwark
,
S. M.
,
Kumar
,
R.
,
Moreno
,
G.
, and
You
,
S. M.
, 2009, “
Pool Boiling Characteristics of Low Concentration Nanofluids
,”
Int. J. Heat Mass Transfer
,
53
, pp.
972
981
.
19.
Rohsenow
,
W. M.
, 1952, “
A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids
,”
Trans. ASME
,
74
, pp.
969
976
.
20.
Carey
,
V. P.
, 1992,
Liquid-Vapor Phase Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Process in Heat Transfer Equipment
,
Taylor & Francis
,
Hebron, KY
.
21.
Zuber
,
N.
, 1959, “
Hydrodynamic Aspects of Boiling Heat Transfer
,” Physics and Mathematics, AEC Report No. AECU-4439.
You do not currently have access to this content.