We have developed a model capable of predicting the performance characteristics of a wiretype Joule–Thomson microcooler intended for use within a cryosurgical probe. Our objective was to be able to predict cold tip temperature, temperature distribution, and cooling power using only inlet gas properties as input variables. To achieve this, the model incorporated gas equations of state to account for changing gas properties due to heat transfer within the heat exchanger and expansion within the capillary. In consideration of inefficiencies, heat in-leak from free convection and radiation was also considered and the use of a 2D axisymmetric finite difference code allowed simulation of axial conduction. To validate simulation results, we have constructed and conducted experiments with two types of microcoolers differing in inner tube material, poly-ether-ether-ketone (PEEK) and stainless steel. The parameters of the experiment were used in the calculations. CO2 was used as the coolant gas for inlet pressures from 0.5 MPa to 2.0 MPa. Heat load trials of up to 550 mW along with unloaded trials were conducted. The temperature measurements show that the model was successfully able to predict the cold tip temperature to a good degree of accuracy and well represent the temperature distribution. For the all PEEK microcooler in a vacuum using 2.0 MPa inlet pressure, the calculations predicted a temperature drop of 57 K and mass flow rate of 19.5 mg/s compared to measured values of 63 K and 19.4 mg/s, therefore, showing that conventional macroscale correlations can hold well for turbulent microscale flow and heat transfer as long as the validity of the assumptions is verified.

References

1.
Mazur
,
P.
, 1984, “
Freezing of Living Cells: Mechanisms and Implications
,”
Am. J. Physiol.: Cell Physiol.
,
247
, pp.
C125
C142
.
2.
Cooper
,
I.
, 1964, “
Cryobiology as Viewed by the Surgeon
,”
Cryobiology
,
51
, pp.
44
51
.
3.
Smith
,
J. J.
, and
Fraser
,
J.
, 1974, “
An Estimation of Tissue Damage and Thermal History in the Cryolesion
,”
Cryobiology
,
11
, pp.
139
147
.
4.
Rivoire
,
M. L.
,
Voiglio
,
E. J.
,
Kaemmerlen
,
P.
,
Molina
,
G.
,
Treilleux
,
I.
,
Finzy
,
J.
,
Delay
,
E.
, and
Gory
,
F.
, 1996, “
Hepatic Cryosurgery Precision: Evaluation of Ultrasonography, Thermometry, and Impedancemetry in a Pig Model
,”
J. Surg. Oncol.
,
61
, pp.
242
248
.
5.
Gage
,
A. A.
, and
Baust
,
J.
, 1998, “
Mechanisms of Tissue Injury in Cryosurgery
,”
Cryobiology
,
37
, pp.
171
186
.
6.
Gage
,
A. A.
,
Guest
,
K.
,
Montes
,
M.
,
Caruana
,
J. A.
, and
Whalen
,
D. A.
, Jr.
, 1985, “
Effect of Varying Freezing and Thawing Rates in Experimental Cryosurgery
,”
Cryobiology
,
22
, pp.
175
182
.
7.
Lerou
,
P. P. P. M.
,
Veenstra
,
T. T.
,
Burger
,
J. F.
,
Ter Brake
,
H. J. M.
, and
Rogalla
,
H.
, 2005, “
Optimization of Counterflow Heat Exchanger Geometry Through Minimization of Entropy Generation
,”
Cryogenics
,
45
, pp.
659
669
.
8.
Derking
,
J. H.
,
Brake
,
H. J. M. T.
,
Sirbi
,
A.
,
Linder
,
M.
, and
Rogalla
,
H.
, 2009, “
Optimization of the Working Fluid in the Joule Thomson Cold Stage
,”
Cryogenics
,
49
, pp.
151
157
.
9.
Chou
,
F. C.
,
Wu
,
S. M.
, and
Pai
,
C. F.
, 1993, “
Prediction of Final Temperature Following Joule–Thomson Expansion of Nitrogen Gas
,”
Cryogenics
,
33
(
9
), pp.
857
862
.
10.
Maytal
,
B. Z.
, 1995, “
Post-Isenthalpic Expansion Temperature
,”
Cryogenics
,
35
(
1
), pp.
69
70
.
11.
Ng
,
K. C.
,
Xue
,
H.
, and
Wang
,
J. B.
, 2002, “
Experimental and Numerical Study on a Miniature Joule–Thomson Cooler for Steady-State Characteristics
,”
Int. J. Heat Fluid Flow
,
45
, pp.
609
618
.
12.
Widyaparaga
,
A.
,
Kuwamoto
,
M.
,
Tanabe
,
A.
,
Sakoda
,
N.
,
Kubota
,
H.
,
Kohno
,
M.
, and
Takata
,
Y.
, 2010, “
Study on a Wire-Type Joule Thomson Microcooler With a Concentric Heat Exchanger
,”
Appl. Therm. Eng.
,
30
(
16
), pp.
2563
2573
.
13.
Propath Group
, 2001,
propath version 12.1
, “
A Program Package for Thermophysical Properties of Fluids
.”
14.
Lemmon
,
E. W.
,
Mclinden
,
M. O.
, and
Friend
,
D. G.
, 2008,
Nist Chemistry Webbook, Thermophysical Properties of Fluid Systems, Nist Standard Reference Database Number 69
,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
15.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Yarin
,
L. P.
, 2005, “
Fluid Fow in Micro-Channels
,”
Int. J. Heat Mass Transfer
,
48
, pp.
1982
1998
.
16.
Morini
,
G. L.
,
Lorenzini
,
M.
, and
Salvigni
,
S.
, 2006, “
Friction Characteristics of Compressible Gas Flows in Microtubes
,”
Exp. Therm. Fluid Sci.
,
30
, pp.
733
744
.
17.
Shah
,
R. K.
, and
London
,
A. L.
, 1978,
Supplement 1 to Advances in Heat Transfer
,
Academic
,
New York
.
18.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
, 2007,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
,
Hoboken, NJ
.
19.
Golzar
,
M.
,
Beureuther
,
R.
,
Brünig
,
H.
,
Tändler
,
B.
, and
Vogel
,
R.
, 2004, “
Online Temperature Measurement and Simultaneous Diameter Estimation of Fibers by Thermography of the Spinline in the Melt Spinning Process
,”
Adv. Polym. Technol.
,
23
(
3
), pp.
176
185
.
20.
Churchill
,
S. W.
, and
Chu
,
H. H. S.
, 1975, “
Correlating Equations for Laminar and Turbulent Free Convection From a Horizontal Cylinder
,”
Int. J. Heat Mass Transfer
,
18
, pp.
1049
1053
.
21.
Gupta
,
P.
, and
Atrey
,
M. D.
, 2000, “
Performance Evaluation of Counter Flow Heat Exchangers Considering the Effect of Heat in Leak and Longitudinal Conduction for Low-Temperature Applications
,”
Cryogenics
40
, pp.
469
474
.
You do not currently have access to this content.