Silica nanoparticles (1% by weight) were dispersed in a eutectic of lithium carbonate and potassium carbonate (62:38 ratio) to obtain high temperature nanofluids. A differential scanning calorimeter instrument was used to measure the specific heat of the neat molten salt eutectic and after addition of nanoparticles. The specific heat of the nanofluid was enhanced by 19–24%. The measurement uncertainty for the specific heat values in the experiments is estimated to be in the range of 1–5%. These experimental data contradict earlier experimental results reported in the literature. (Notably, the stability of the nanofluid samples was not verified in these studies.) In the present study, the dispersion and stability of the nanoparticles were confirmed by using scanning electron microscopy (SEM). Percolation networks were observed in the SEM image of the nanofluid. Furthermore, no agglomeration of the nanoparticles was observed, as confirmed by transmission electron microscopy. The observed enhancements are suggested to be due to the high specific surface energies that are associated with the high surface area of the nanoparticles per unit volume (or per unit mass).

1.
Eastman
,
J. A.
,
Choi
,
U. S.
,
Li
,
S.
,
Thompson
,
L. J.
, and
Lee
,
S.
, 1997, “
Enhanced Thermal Conductivity Through the Development of Nanofluids
,”
Mater Res. Soc. Symp. Proc.
,
457
, pp.
9
10
. 0002-7820
2.
Lee
,
S.
,
Choi
,
S. U.-S.
,
Li
,
S.
, and
Eastman
,
J. A.
, 1999, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
0022-1481,
121
(
2
), pp.
280
289
.
3.
Keblinski
,
P.
,
Eastman
,
J. A.
, and
Cahill
,
D. G.
, 2005, “
Nanofluids for Thermal Transport
,”
Mater. Today
1369-7021,
8
(
6
), pp.
36
44
.
4.
Wang
,
X. -Q.
, and
Mujumdar
,
A. S.
, 2007, “
Heat Transfer Characteristics of Nanofluids: A Review
,”
Int. J. Therm. Sci.
1290-0729,
46
(
1
), pp.
1
19
.
5.
Shaikh
,
S.
,
Lafdi
,
K.
, and
Rengasamy
,
P.
, 2007, “
Thermal Conductivity Improvement in Carbon Nanoparticle Doped PAO Oil: An Experimental Study
,”
J. Appl. Phys.
0021-8979,
101
, p.
064302
.
6.
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
, 2002, “
Mechanism of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)
,”
Int. J. Heat Mass Transfer
0017-9310,
45
(
4
), pp.
855
863
.
7.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
, 2006, “
Brownian-Motion-Based Convective-Conductive Model for the Effective Thermal Conductivity of Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
588
595
.
8.
Keblinski
,
P.
,
Prasher
,
R.
, and
Eapen
,
J.
, 2008, “
Thermal Conductance of Nanofluids: Is the Controversy Over?
,”
J. Nanopart. Res.
1388-0764,
10
, pp.
1089
1097
.
9.
Evans
,
W.
,
Prasher
,
R.
,
Fish
,
J.
,
Meakin
,
P.
,
Phelan
,
P.
, and
Keblinski
,
P.
, 2008, “
Effect of Aggregation and Interfacial Thermal Resistance on Thermal Conductivity of Nanocomposites and Colloidal Nanofluids
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
1431
1438
.
10.
Buongiorno
,
J.
,
Venerus
,
D. C.
,
Prabhat
,
N.
,
McKrell
,
T.
,
Townsend
,
J.
,
Christianson
,
R.
,
Tolmachev
,
Y. V.
,
Keblinski
,
P.
,
Hu
,
L.
,
Alvarado
,
J. L.
,
Bang
,
I. C.
,
Bishnoi
,
S. W.
,
Bonetti
,
M.
,
Botz
,
F.
,
Cecere
,
A.
,
Chang
,
Y.
,
Chen
,
G.
,
Chen
,
H.
,
Chung
,
S. J.
,
Chyu
,
M. K.
,
Das
,
S. K.
,
Di Paola
,
R.
,
Ding
,
Y.
,
Dubois
,
F.
,
Dzido
,
G.
,
Eapen
,
J.
,
Escher
,
W.
,
Funfschilling
,
D.
,
Galand
,
Q.
,
Gao
,
J.
,
Gharagozloo
,
P. E.
,
Goodson
,
K. E.
,
Gutierrez
,
J. G.
,
Hong
,
H.
,
Horton
,
M.
,
Hwang
,
K. S.
,
Iorio
,
C. S.
,
Jang
,
S. P.
,
Jarzebski
,
A. B.
,
Jiang
,
Y.
,
Jin
,
L.
,
Kabelac
,
S.
,
Kamath
,
A.
,
Kedzierski
,
M. A.
,
Kieng
,
L. G.
,
Kim
,
C.
,
Kim
,
J. -H.
,
Kim
,
S.
,
Lee
,
S. H.
,
Leong
,
K. C.
,
Manna
,
I.
,
Michel
,
B.
,
Ni
,
R.
,
Patel
,
H. E.
,
Philip
,
J.
,
Poulikakos
,
D.
,
Reynaud
,
C.
,
Savino
,
R.
,
Singh
,
P. K.
,
Song
,
P.
,
Sundararajan
,
T.
,
Timofeeva
,
E.
,
Tritcak
,
T.
,
Turanov
,
A. N.
,
Vaerenbergh
,
S. V.
,
Wen
,
D.
,
Witharana
,
S.
,
Yang
,
C.
,
Yeh
,
W. -H.
,
Zhao
,
X. -Z.
, and
Zhou
,
S. -Q.
, 2009, “
A Benchmark Study on the Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
0021-8979,
106
, p.
094312
.
11.
Nelson
,
I. C.
,
Banerjee
,
D.
, and
Rengasamy
,
P.
, 2009, “
Flow Loop Experiments Using Polyalphaolefin Nanofluids
,”
J. Thermophys. Heat Transfer
0887-8722,
23
(
4
), pp.
752
761
.
12.
Zhou
,
S. Q.
, and
Ni
,
R.
, 2008, “
Measurement of the Specific Heat Capacity of Water-Based Al2O3 Nanofluid
,”
Appl. Phys. Lett.
0003-6951,
92
, p.
093123
.
13.
Kearney
,
D.
,
Herrmann
,
U.
,
Nava
,
P.
,
Kelly
,
B.
,
Mahoney
,
R.
,
Pacheco
,
J.
,
Cable
,
R.
,
Potrovitza
,
N.
,
Blake
,
D.
, and
Price
,
H.
, 2003, “
Assessment of a Molten Salt Heat Transfer Fluid in a Parabolic Trough Solar Field
,”
ASME J. Sol. Energy Eng.
0199-6231,
125
, pp.
170
176
.
14.
Buongiorno
,
J.
, 2006, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
240
250
.
15.
Wang
,
B. X.
,
Zhou
,
L. P.
, and
Peng
,
X. F.
, 2006, “
Surface and Size Effects on the Specific Heat Capacity of Nanoparticles
,”
Int. J. Thermophys.
0195-928X,
27
, pp.
139
151
.
16.
Wang
,
L.
,
Tan
,
Z. C.
,
Meng
,
S. H.
,
Liang
,
D.
, and
Li
,
G. H.
, 2001, “
Enhancement of Molar Heat Capacity of Nanostructured Al2O3
,”
J. Nanopart. Res.
1388-0764,
3
, pp.
483
487
.
17.
Araki
,
N.
,
Matsuura
,
M.
,
Makino
,
A.
,
Hirata
,
T.
, and
Kato
,
Y.
, 1988, “
Measurement of Thermophysical Properties of Molten Salts: Mixtures of Alkaline Carbonate Salts
,”
Int. J. Thermophys.
0195-928X,
9
, pp.
1071
1080
.
18.
Oh
,
S. H.
,
Kauffman
,
Y.
,
Scheu
,
C.
,
Kaplan
,
W. D.
, and
Ruhle
,
M.
, 2005, “
Ordered Liquid Aluminum at the Interface With Sapphire
,”
Science
0036-8075,
310
(
5748
), pp.
661
663
.
19.
Xue
,
L.
,
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U.-S.
, and
Eastman
,
J. A.
, 2004, “
Effect of Liquid Layering at the Liquid–Solid Interface on Thermal Transport
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
4277
4284
.
You do not currently have access to this content.