Accurate prediction of critical heat flux (CHF) in microchannels and minichannels is of great interest in estimating the safe operational limits of cooling systems employing flow boiling. Scale analysis is applied to identify the relevant forces leading to the CHF condition. Using these forces, a local parameter model is developed to predict the flow boiling CHF. The theoretical model is an extension of an earlier pool boiling CHF model and incorporates force balance among the evaporation momentum, surface tension, inertia, and viscous forces. Weber number, capillary number, and a new nondimensional group introduced earlier by Kandlikar (2004, “Heat Transfer Mechanisms During Flow Boiling in Microchannels,” ASME J. Heat Transfer, 126, pp. 8–16), K2, representing the ratio of evaporation momentum to surface tension forces, emerged as main groups in quantifying the narrow channel effects on CHF. The constants in the model were calculated from the available experimental data. The mean error with ten data sets is 19.7% with 76% data falling within ±30% error band and 93% within ±50% error band. The length to diameter ratio emerged as a parameter indicating a stepwise regime change. The success of the model indicates that flow boiling CHF can be modeled as a local phenomenon and the scale analysis is able to reveal important information regarding fundamental mechanisms leading to the CHF condition.

1.
Katto
,
Y.
, 1985, “
Critical Heat Flux
,”
Advances in Heat Transfer
,
J. P.
Hartnett
and
T. F.
Irvine
, eds.,
Academic Press
,
New York
, Vol.
17
.
2.
Hewitt
,
G. F.
, 1982, “
Burnout
,”
Handbook of Multiphase Systems
,
G.
Hetsroni
, ed.,
Hemisphere
,
New York
.
3.
Bergles
,
A. E.
, 1976, “
Burnout in Boiling Heat Transfer, Part II: Subcooled and Low Quality Forced-Convection Systems
,”
Two-Phase Flows and Heat Transfer
,
S.
Kakac
and
T. N.
Veziroglu
, eds.,
Hemisphere
,
Washington, DC
, Vol.
II
.
4.
Tong
,
L. S.
, and
Tang
,
Y. S.
, 1997, “
Flow Boiling Crisis
,”
Boiling Heat Transfer and Two-Phase Flow
,
Taylor & Francis
,
Washington, DC
, Chap. 5.
5.
Celata
,
G. P.
, and
Mariani
,
A.
, 1999, “
CHF and Post-CHF Heat Transfer
,”
Handbook of Phase Change: Boiling and Condensation
,
S. G.
Kandlikar
,
M.
Shoji
, and
V. K.
Dhir
, eds.,
Taylor & Francis
,
Philadelphia, PA
, Chap. 17.
6.
Bergles
,
A. E.
, and
Kandlikar
,
S. G.
, 2005, “
On the Nature of Critical Heat Flux in Microchannels
,”
ASME J. Heat Transfer
0022-1481,
127
(
1
), pp.
101
107
.
7.
Wang
,
G. D.
,
Cheng
,
P.
, and
Wu
,
H. Y.
, 2007, “
Unstable and Stable Flow Boiling in Parallel Microchannels and in a Single Microchannel
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
4297
4310
.
8.
Kandlikar
,
S. G.
,
Kuan
,
W. K.
,
Willistein
,
D. A.
, and
Borrelli
,
J.
, 2006, “
Stabilization of Flow Boiling in Microchannels Using Pressure Drop Elements and Fabricated Nucleation Sites
,”
ASME J. Heat Transfer
0022-1481,
128
(
4
), pp.
389
396
.
9.
Kuo
,
C. J.
, and
Peles
,
Y.
, 2008, “
Flow Boiling Instabilities in Microchannels and Means for Mitigation by Reentrant Cavities
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
072402
.
10.
Kandlikar
,
S. G.
, 2009, “
Methods for Stabilizing Flow in Channels and Systems Thereof
,” U.S. Patent No. 7,575,046.
11.
Rohsenow
,
W. M.
, 1952, “
A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids
,”
Trans. ASME
0097-6822,
74
, pp.
969
976
.
12.
Stephan
,
K.
, and
Abdelsalam
,
M.
, 1980, “
A New Correlation for Natural Convection Boiling
,”
Int. J. Heat Mass Transfer
0017-9310,
23
, pp.
73
87
.
13.
Cooper
,
M. G.
, 1984, “
Saturation Nucleate Pool Boiling—A Simple Correlation
,”
IChemE Symposium Series
, Vol.
86
, pp.
786
793
.
14.
Bonilla
,
C. F.
, and
Perry
,
C. W.
, 1941, “
Heat Transmission to Boiling Binary Liquid Mixtures
,”
Transactions of American Society of Chemical Engineers
,
37
, pp.
685
705
.
15.
Kutateladze
,
S. S.
, 1948, “
On the Transition to Film Boiling Under Natural Convection
,” Kotloturbostroenie, No. 3, pp.
10
12
.
16.
Kutateladze
,
S. S.
, 1951, “
A Hydrodynamic Theory of Changes in a Boiling Process Under Free Convection
,” Izvestia Akademia Nauk, S.S.S.R., Otdelenie Tekhnicheski Nauk, No. 4, p.
529
.
17.
Borishanskii
,
V. M.
, 1955, “
On the Problem of Generalizing Experimental Data on the Cessation of Bubble Boiling in Large Volume of Liquids
,” Ts. K.I.T., 28, Moscow.
18.
Rohsenow
,
W. M.
, and
Griffith
,
P.
, 1956, “
Correlation of Maximum Heat Transfer Data for Boiling of Saturated Liquids
,”
Chem. Eng. Prog., Symp. Ser.
0069-2948,
52
, pp.
47
49
.
19.
Zuber
,
N.
, 1959, “
Hydrodynamic Aspects of Boiling Heat Transfer
,” Ph.D. thesis, Research Laboratory, Los Angeles and Ramo-Wooldridge Corporation, University of California, Los Angeles, CA.
20.
Chang
,
Y. P.
, 1961, “
An Analysis of the Critical Conditions and Burnout in Boiling Heat Transfer
,” USAEC Report No. TID-14004, Washington, DC.
21.
Katto
,
Y.
, and
Yokoya
,
S.
, 1968, “
Principal Mechanism of Boiling Crisis in Pool Boiling
,”
Int. J. Heat Mass Transfer
0017-9310,
11
, pp.
993
1002
.
22.
Haramura
,
Y.
, and
Katto
,
Y.
, 1983, “
New Hydrodynamic Model of Critical Heat Flux Applicable Widely to Both Pool and Forced Convection Boiling on Submerged Bodies in Saturated Liquids
,”
Int. J. Heat Mass Transfer
0017-9310,
26
, pp.
389
399
.
23.
Lienhard
,
J. H.
, and
Dhir
,
V. K.
, 1973, “
Extended Hydrodynamic Theory of the Peak and Minimum Pool Boiling Heat Fluxes
,”
NASA
Report No. CR-2270, Contract No. NGL 18-001-035.
24.
Kirichenko
,
Y. A.
, and
Cherniakov
,
P. S.
, 1973, “
Determination of the First Critical Thermal Heat Flux on Flat Heaters
,”
J. Eng. Phys.
0022-0841,
20
, pp.
699
702
.
25.
Unal
,
C.
,
Daw
,
V.
, and
Nelson
,
R. A.
, 1992, “
Unifying the Controlling Mechanisms for the Critical Heat Flux and Quenching: The Ability of Liquid to Contact the Hot Surface
,”
ASME J. Heat Transfer
0022-1481,
114
, pp.
972
982
.
26.
Kandlikar
,
S. G.
, 2001, “
A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
1071
1079
.
27.
Whalley
,
P. B.
,
Hutchinson
,
P.
, and
Hewitt
,
G. F.
, 1974, “
The Calculation of Critical Heat Flux in Forced Convective Boiling
,”
International Heat Transfer Conference
, Tokyo, Vol.
IV
, pp.
290
294
.
28.
Revellin
,
R.
, and
Thome
,
J. R.
, 2008, “
A Theoretical Model for the Prediction of the Critical heat Flux in Heated Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
1216
1225
.
29.
Wojtan
,
L.
,
Revellin
,
R.
, and
Thome
,
J. R.
, 2006, “
Investigation of Saturated Heat Flux in a Single, Uniformly Heated Microchannel
,”
Exp. Therm. Fluid Sci.
0894-1777,
30
, pp.
765
774
.
30.
Kosar
,
A.
, 2009, “
A Model to Predict Saturated Critical Heat Flux in Minichannels and Microchannels
,”
Int. J. Therm. Sci.
1290-0729,
48
, pp.
261
270
.
31.
Katto
,
Y.
, and
Ohno
,
H.
, 1984, “
An Improved Version of the Generalized Correlation of Critical Heat Flux for the Forced Convective Boiling in Uniformly Heated Vertical Tubes
,”
Int. J. Heat Mass Transfer
0017-9310,
27
(
9
), pp.
1641
1648
.
32.
Qu
,
W.
, and
Mudawar
,
I.
, 2004, “
Measurement and Correlation of Critical Heat Flux in Two-Phase Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
2045
2059
.
33.
Bowers
,
M. B.
, and
Mudawar
,
I.
, 1994, “
High Flux Boiling in Low Flow Rate, Low Pressure Drop Mini-Channel and Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
321
332
.
34.
Sarma
,
P. K.
,
Srinivas
,
V.
,
Sharma
,
K. V.
,
Dharma
,
R.
, and
Celata
,
G. P.
, 2006, “
A Correlation to Evaluate Critical Heat Flux in Small Diameter Tubes Under Subcooled Conditions of the Coolant
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
42
51
.
35.
Roday
,
A. P.
, and
Jensen
,
M. K.
, 2009, “
Study of the Critical Heat Flux Condition With Water and R-123 During Flow Boiling in Microtubes. Part II—Comparison of Data With Correlations and Establishment of a New Subcooled CHF Correlation
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
3250
3256
.
36.
Kosar
,
A.
,
Peles
,
Y.
,
Bergles
,
A. E.
, and
Cole
,
G. S.
, 2009, “
Experimental Investigation of Critical Heat Flux in Microchannels for Flow-Field Probes
,” ASME Paper No. ICNMM2009-82214.
37.
Bergles
,
A. E.
, 1963, “
Subcooled Burnout in Tubes of Small Diameter
,” ASME Paper No. 63-WA-182.
38.
Vandervort
,
C. L.
,
Bergles
,
A. E.
, and
Jensen
,
M. K.
, 1994, “
An Experimental-Study of Critical Heat-Flux in Very High Heat Flux Subcooling Boiling
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
161
173
.
39.
Zhang
,
W.
,
Hibiki
,
T.
,
Mishima
,
K.
, and
Mi
,
Y.
, 2006, “
Correlation of Critical Heat Flux for Flow Boiling of Water in Mini-Channels
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
1058
1072
.
40.
Bowring
,
R. W.
, 1972, “
A Simple but Accurate Round Tube Uniform Heat Flux, Dryout Correlation Over the Pressure Range 0.7–17 MN/m2 (100–2500 psia)
,” United Kingdom Atomic Energy Authority, Paper No. AEEW-R 789.
41.
Katto
,
Y.
, 1978, “
A Generalized Correlation of Critical Heat Flux for the Forced Convection Boiling in Vertical Uniformly Heated Round Tubes
,”
Int. J. Heat Mass Transfer
0017-9310,
21
, pp.
1527
1542
.
42.
Shah
,
M. M.
, 1987, “
Improved General Correlation for Critical Heat Flux During Upflow in Uniformly Heated Vertical Tubes
,”
Int. J. Heat Fluid Flow
0142-727X,
8
, pp.
326
335
.
43.
Tong
,
L. S.
, 1968, “
Boundary-Layer Analysis of the Flow Boiling Crisis
,”
Int. J. Heat Mass Transfer
0017-9310,
11
, pp.
1208
1211
.
44.
Inasaka
,
F.
, and
Nariai
,
H.
, 1987, “
Critical Heat Flux and Flow Characteristics of Subcooled Flow Boiling in Narrow Tubes
,”
JSME Int. J.
0913-185X,
30
, pp.
1595
1600
.
45.
Celata
,
G. P.
,
Cumo
,
M.
, and
Mariani
,
A.
, 1994, “
Assessment of Correlations and Models for the Prediction of CHF in Water Subcooled Flow Boiling
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
237
255
.
46.
Hall
,
D. D.
, and
Mudawar
,
I.
, 2000, “
Critical Heat Flux (CHF) for Water Flow in Tubes—II. Subcooled CHF Correlations
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
2605
2640
.
47.
Kandlikar
,
S. G.
, and
Steinke
,
M. E.
, 2002, “
Contact Angles and Interface Behavior During Rapid Evaporation of Liquid on a Heated Surface
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3771
3780
.
48.
Sefiane
,
K.
,
Benielli
,
D.
, and
Steinchen
,
A.
, 1998, “
A New Mechanism for Pool Boiling Crisis, Recoil Instability and Contact Angle Influence
,”
Colloids Surf., A
0927-7757,
142
, pp.
361
373
.
49.
Kandlikar
,
S. G.
, “
Scale Effects on Flow Boiling in Microchannels: A Fundamental Perspective
,”
Int. J. Therm. Sci.
1290-0729, in press.
50.
Phan
,
H. T.
,
Caney
,
N.
,
Marty
,
P.
,
Colasson
,
S.
, and
Gavillet
,
J.
, 2009, “
How Does Wettability Influence Nucleate Boiling
,”
C. R. Mec.
1631-0721,
337
,
251
259
.
51.
Kandlikar
,
S. G.
, 2004, “
Heat Transfer Mechanisms During Flow Boiling in Microchannels
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
8
16
.
52.
Kandlikar
,
S. G.
, and
Grande
,
W. J.
, 2003, “
Evolution of Microchannel Flow Passages—Thermohydraulic Performance and Fabrication Technology
,”
Heat Transfer Eng.
0145-7632,
24
(
1
), pp.
3
17
.
53.
Kandlikar
,
S. G.
, 2006,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier
,
Kidlington, Oxford, UK
.
54.
Kosar
,
A.
,
Kuo
,
C. -J.
, and
Peles
,
Y.
, 2005, “
Boiling Heat Transfer in Rectangular Microchannels With Reentrant Cavities
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
4867
4886
.
55.
Kosar
,
A.
, and
Peles
,
Y.
, 2007, “
Critical Heat Flux of R-123 in Silicon-Based Microchannels
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
844
851
.
56.
Kuan
,
W. K.
, and
Kandlikar
,
S. G.
, 2008, “
Critical Heat Flux Measurement and Model for Refrigerant-123 Under Stabilized Flow Conditions in Microchannels
,”
ASME J. Heat Transfer
0022-1481,
130
(
3
), p.
034503
.
57.
Roday
,
A. P.
, and
Jensen
,
M. K.
, 2009, “
Study of the Critical Heat Flux Condition With Water and R-123 during Flow Boiling in Microtubes. Part I—Experimental Results and Discussion of Parametric Trends
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
3235
3249
.
58.
Martin-Callizo
,
C.
,
Ali
,
R.
, and
Palm
,
B.
, 2008, “
Dryout Incipience and Critical Heat Flux in Saturated Flow Boiling of Refrigerants in a Vertical Uniformly Heated Microchannel
,”
Proceedings of the ASME Sixth International Conference on Nanochannels, Microchannels and Minichannels
, pp.
708
712
.
59.
Inasaka
,
F.
, and
Nariai
,
H.
, 1992, “
Critical Heat Flux of Subcooled Flow Boiling in Uniformly Heated Straight Tubes
,”
Fusion Eng. Des.
0920-3796,
19
, pp.
329
337
.
60.
Roach
,
G. M.
,
Abdel-Khalik
,
S. I.
,
Ghiaasiaan
,
S. M.
,
Dowling
,
M. F.
, and
Jeter
,
S. M.
, 1999, “
Low-Flow Critical Heat Flux in Heated Microchannels
,”
Nucl. Sci. Eng.
0029-5639,
131
, pp.
411
425
.
61.
Sumith
,
B.
,
Kaminaga
,
F.
, and
Matsumura
,
K.
, 2003, “
Saturated Boiling of Water in a Vertical Small Diameter Tube
,”
Exp. Therm. Fluid Sci.
0894-1777,
27
, pp.
789
801
.
62.
Cheng
,
X.
,
Erbacher
,
F. J.
,
Muller
,
U.
, and
Pang
,
F. G.
, 1997, “
Critical Heat Flux in Uniformly Heated Vertical Tubes
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
2929
2939
.
63.
Agostini
,
B.
,
Revellin
,
R.
,
Thome
,
J. R.
,
Fabbri
,
M.
,
Michel
,
B.
,
Calmi
,
D.
, and
Kloter
,
U.
, 2008, “
High Heat Flux Flow Boiling in Silicon Multi-Microchannels—Part III: Saturated Critical Heat Flux of R236fa and Two-Phase Pressure Drops
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
5426
5442
.
64.
Kandlikar
,
S. G.
, 2010, “
Similarities and Difference Between Pool Boiling and Flow Boiling Heat Transfer in Microchannels
,”
Heat Transfer Eng.
0145-7632,
31
(
3
), pp.
159
167
.
65.
Kandlikar
,
S. G.
, 2002, “
Fundamental Issues Related to Flow Boiling in Minichannels and Microchannels
,”
Exp. Therm. Fluid Sci.
0894-1777,
26
(
2–4
), pp.
389
407
.
You do not currently have access to this content.