The pool boiling characteristics of water-based nanofluids with alumina and titania nanoparticles of 0.01vol% were investigated on a thermally heated disk heater at saturated temperature and atmospheric pressure. The results confirmed the findings of previous studies that nanofluids can significantly enhance the critical heat flux (CHF), resulting in a large increase in the wall superheat. It was found that some nanoparticles deposit on the heater surface during nucleate boiling, and the surface modification due to the deposition results in the same magnitude of CHF enhancement in pure water as for nanofluids. Subsequent to the boiling experiments, the interfacial properties of the heater surfaces were examined using dynamic wetting of an evaporating water droplet. As the surface temperature increased, the evaporating meniscus on the clean surface suddenly receded toward the liquid due to the evaporation recoil force on the liquid-vapor interface, but the nanoparticle-fouled surface exhibited stable wetting of the liquid meniscus even at a remarkably higher wall superheat. The heat flux gain attainable due to the improved wetting of the evaporating meniscus on the fouled surface showed good agreement with the CHF enhancement during nanofluid boiling. It is supposed that the nanoparticle layer increases the stability of the evaporating microlayer underneath a bubble growing on a heated surface and thus the irreversible growth of a hot/dry spot is inhibited even at a high wall superheat, resulting in the CHF enhancement observed when boiling nanofluids.

1.
Chang
,
S. H.
, and
Baek
,
W. P.
, 2003, “
Understanding, Predicting, and Enhancing Critical Heat Flux
,”
Proceedings of the Tenth International Topical Meeting on Nuclear Reactor Thermal Hydraulics
, Seoul, Republic of Korea, pp.
5
9
.
2.
You
,
S. M.
,
Kim
,
J. H.
, and
Kim
,
K. H.
, 2003, “
Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
0003-6951,
83
, pp.
3374
3376
.
3.
Vassallo
,
P.
,
Kumar
,
R.
, and
D’Amico
,
S.
, 2004, “
Pool Boiling Heat Transfer Experiments in Silica-Water Nano-fluids
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
407
411
.
4.
Bang
,
I. C.
, and
Chang
,
S. H.
, 2005, “
Boiling Heat Transfer Performance and Phenomena of Al2O3-Water Nano-fluids From a Plain Surface in a Pool
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
2407
2419
.
5.
Milanova
,
D.
, and
Kumar
,
R.
, 2005, “
Role of Ions in Pool Boiling Heat Transfer of Pure and Silica Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
87
, p.
233107
.
6.
Milanova
,
D.
, and
Kumar
,
R.
, 2008, “
Heat Transfer Behavior of Silica Nanoparticles in Pool Boiling Experiment
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
042401
.
7.
Kumar
,
R.
, and
Milanova
,
D.
, 2009, “
Dispersion and Surface Characteristics of Nanosilica Suspensions
,”
Ann. N.Y. Acad. Sci.
0077-8923,
1161
, pp.
472
483
.
8.
Kim
,
H.
,
Kim
,
J.
, and
Kim
,
M. H.
, 2006, “Experimental Study on CHF Characteristics of Water-TiO2 Nanofluids,” Nuclear Engineering Technology, 38, pp. 61–68.
9.
Kim
,
H.
,
Kim
,
J.
, and
Kim
,
M. H.
, 2006, “
Effect of Nanoparticles on CHF Enhancement in Pool Boiling of Nano-fluids
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
5070
5074
.
10.
Golubovic
,
M.
,
Hettiarachchi
,
M. H. D.
, and
Worek
,
W. M.
, 2008, “
Nanofluids and Critical Heat Flux
,” ASME Paper No. MNHT2008-52204.
11.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
, 2007, “
Surface Wettability Change During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
4105
4116
.
12.
Kim
,
H. D.
, and
Kim
,
M. H.
, 2007, “
Effect of Nanoparticle Deposition on Capillary Wicking That Influences the Critical Heat Flux in Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
91
, p.
014104
.
13.
Liu
,
Z.
, and
Liao
,
L.
, 2008, “
Sorption and Agglutination Phenomenon of Nanofluids on a Plane Heating Surface During Pool Boiling
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
2593
2602
.
14.
Coursey
,
J. S.
, and
Kim
,
J.
, 2008, “
Nanofluid Boiling: The Effect of Surface Wettability
,”
Int. J. Heat Fluid Flow
0142-727X,
29
, pp.
1577
1585
.
15.
Sefiane
,
K.
, 2006, “
On the Role of Structural Disjoining Pressure and Contact Line Pinning in Critical Heat Flux Enhancement During Boiling of Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
89
, p.
044106
.
16.
Wasan
,
D. T.
, and
Nikolov
,
A. D.
, 2003, “
Spreading of Nanofluids on Solids
,”
Nature (London)
0028-0836,
423
, pp.
156
159
.
17.
Wen
,
D.
, 2008, “
Mechanisms of Thermal Nanofluids on Enhanced Critical Heat Flux (CHF)
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
4958
4965
.
18.
Santillán
,
M. J.
,
Membrives
,
F.
,
Quaranta
,
N.
, and
Boccaccini
,
A. R.
, 2008, “
Characterization of TiO2 Nanoparticle Suspensions for Electrophoretic Deposition
,”
J. Nanopart. Res.
1388-0764,
10
, pp.
787
793
.
19.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
,
Sher
,
I.
, and
Segal
,
Z.
, 2006, “
Bubble Growth in Saturated Pool Boiling in Water and Surfactant Solution
,”
Int. J. Multiphase Flow
0301-9322,
32
, pp.
159
182
.
20.
Holman
,
J. P.
, 2001,
Experimental Methods for Engineers
, 7th ed.,
McGraw-Hill
,
New York
.
21.
Rohsenow
,
W. M.
, and
Griffith
,
P.
, 1956, “
Correlation of Maximum Heat Flux Data for Boiling of Saturated Liquids
,”
Chem. Eng. Prog., Symp. Ser.
0069-2948,
52
, pp.
47
49
.
22.
Zuber
,
N.
, 1959, “
Hydrodynamic Aspects of Boiling Heat Transfer
,” Ph.D. thesis, University of California, Los Angeles, CA.
23.
Haramura
,
Y.
, and
Katto
,
Y.
, 1983, “
A New Hydrodynamic Model of Critical Heat Flux, Applicable Widely to Both Pool and Forced Convection Boiling on Submerged Bodies in Saturated Liquids
,”
Int. J. Heat Mass Transfer
0017-9310,
26
, pp.
389
399
.
24.
Kim
,
H.
,
DeWitt
,
G.
,
McKrell
,
T.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
, 2009, “
On the Quenching of Steel and Zircaloy Spheres in Water-Based Nanofluids With Alumina, Silica and Diamond Nanoparticles
,”
Int. J. Multiphase Flow
0301-9322,
35
, pp.
427
438
.
25.
Cieslinski
,
J. T.
, 2002, “
Nucleate Pool Boiling on Porous Metallic Coatings
,”
Exp. Therm. Fluid Sci.
0894-1777,
25
, pp.
557
564
.
26.
Kim
,
H.
, 2007, “
Experimental Investigations of Pool Boiling CHF Enhancement in Nanofluids
,” Ph.D. thesis, POSTECH, Pohang, Republic of Korea.
27.
Chen
,
R.
,
Lu
,
M. C.
,
Srinivasan
,
V.
,
Wang
,
Z.
,
Cho
,
H. H.
, and
Majumda
,
A.
, 2009, “
Nanowires for Enhanced Boiling Heat Transfer
,”
Nano Lett.
1530-6984,
9
, pp.
548
553
.
28.
Jeong
,
Y. H.
,
Chang
,
W. J.
, and
Chang
,
S. H.
, 2008, “
Wettability of Heated Surfaces Under Pool Boiling Using Surfactant Solutions and Nano-fluids
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
3025
3031
.
29.
Kandlikar
,
S. G.
, and
Steinke
,
M. E.
, 2002, “
Contact Angles and Interface Behavior During Rapid Evaporation of Liquid on a Heated Surface
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3771
3780
.
30.
Moosman
,
S.
, and
Homsy
,
G. M.
, 1980, “
Evaporating Menisci of Wetting Fluids
,”
J. Colloid Interface Sci.
0021-9797,
73
, pp.
212
223
.
31.
Sefiane
,
K.
,
Benielli
,
D.
, and
Steinchen
,
A.
, 1998, “
A New Mechanism for Pool Boiling Crisis, Recoil Instability and Contact Angle Influence
,”
Colloids Surf., A
0927-7757,
142
, pp.
361
373
.
32.
Theofanous
,
T. G.
, and
Dinh
,
T. N.
, 2006, “
High Heat Flux Boiling and Burnout as Microphysical Phenomena: Mounting Evidence and Opportunities
,”
Multiphase Sci. Technol.
0276-1459,
18
, pp.
251
276
.
33.
Wang
,
H.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
, 2008, “
An Analytical Solution for the Total Heat Transfer in the Thin-Film Region of an Evaporating Meniscus
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
6317
6322
.
34.
Theofanous
,
T. G.
, and
Dinh
,
T. N.
, 2002, “
The Boiling Crisis Phenomenon. Part II: Dryout Dynamics and Burnout
,”
Exp. Therm. Fluid Sci.
0894-1777,
26
, pp.
793
810
.
35.
Kandlikar
,
S. G.
, 2001, “
A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
1071
1079
.
You do not currently have access to this content.