The recently developed model for thermal radiation in multiphase flows typical of melt-coolant interactions is generalized to account for transient temperature profile in large semitransparent particles of solidifying melt. A modification of the large-cell radiation model (LCRM) is based on the approximate solution for coupled radiation and conduction in optically thick spherical particles of a refractive material. The simplicity of the suggested approximation enables one to implement the modified model in a multiphase computational fluid dynamics code. The LCRM extension makes possible the use of this approach not only for the core melt in nuclear fuel-coolant interactions but also for other melt substances, which are widely used in the laboratory experiments. The numerical data demonstrate an effect of absorption coefficient of the particle substance on the rate of particle cooling and solidification.

1.
Modest
,
M. F.
, 2003,
Radiative Heat Transfer
, 2nd ed.,
Academic
,
New York
.
2.
Dombrovsky
,
L. A.
, 1996,
Radiation Heat Transfer in Disperse Systems
,
Begell House
,
New York
.
3.
Viskanta
,
R.
, 2005,
Radiative Transfer in Combustion Systems: Fundamentals and Applications
,
Begell House
,
New York
, Chap. 7.
4.
Dinh
,
T. N.
,
Dinh
,
A. T.
,
Nourgaliev
,
R. R.
, and
Sehgal
,
B. R.
, 1999, “
Investigation of Film Boiling Thermal Hydraulics Under FCI Conditions: Results of Analyses and Numerical Study
,”
Nucl. Eng. Des.
0029-5493,
189
(
1–3
), pp.
251
272
.
5.
Fletcher
,
D. F.
, 1999, “
Radiation Absorption During Premixing
,”
Nucl. Eng. Des.
0029-5493,
189
(
1–3
), pp.
435
440
.
6.
Dombrovsky
,
L. A.
, 1999, “
Radiation Heat Transfer From a Spherical Particle Via Vapor Shell to the Surrounding Liquid
,”
High Temp.
0018-151X,
37
(
6
), pp.
912
919
.
7.
Dombrovsky
,
L. A.
, 2000, “
Radiation Heat Transfer From a Hot Particle to Ambient Water Through the Vapor Layer
,”
Int. J. Heat Mass Transfer
0017-9310,
43
(
13
), pp.
2405
2414
.
8.
Dombrovsky
,
L. A.
, and
Dinh
,
T. N.
, 2008, “
The Effect of Thermal Radiation on the Solidification Dynamics of Metal Oxide Melt Droplets
,”
Nucl. Eng. Des.
0029-5493,
238
(
6
), pp.
1421
1429
.
9.
Dombrovsky
,
L. A.
,
Davydov
,
M. V.
, and
Kudinov
,
P.
, 2009, “
Thermal Radiation Modeling in Numerical Simulation of Melt-Coolant Interaction
,”
Comput. Thermal Scien.
1940-2503,
1
(
1
), pp.
1
35
.
10.
Hale
,
G. M.
, and
Querry
,
M. P.
, 1973, “
Optical Constants of Water in the 200 nm to 200 μm Wavelength Region
,”
Appl. Opt.
0003-6935,
12
(
3
), pp.
555
563
.
11.
Dombrovsky
,
L. A.
, 2007, “
Large-Cell Model of Radiation Heat Transfer in Multiphase Flows Typical for Fuel-Coolant Interaction
,”
Int. J. Heat Mass Transfer
0017-9310,
50
(
17–18
), pp.
3401
3410
.
12.
Magallon
,
D.
, 2006, “
Characteristics of Corium Debris Bed Generated in Large-Scale Fuel-Coolant Interaction Experiments
,”
Nucl. Eng. Des.
0029-5493,
236
(
19–21
), pp.
1998
2009
.
13.
Dombrovsky
,
L. A.
, 2000, “
Thermal Radiation From Nonisothermal Spherical Particles of a Semitransparent Material
,”
Int. J. Heat Mass Transfer
0017-9310,
43
(
9
), pp.
1661
1672
.
14.
Dombrovsky
,
L. A.
, 2002, “
A Modified Differential Approximation for Thermal Radiation of Semitransparent Nonisothermal Particles: Application to Optical Diagnostics of Plasma Spraying
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
73
(
2–5
), pp.
433
441
.
15.
Dombrovsky
,
L. A.
, 2007, “
Thermal Radiation of Nonisothermal Particles in Combined Heat Transfer Problems
,”
Proceedings of the Fifth International Symposium on Radiative Transfer
,
M. P.
Mengüç
and
N.
Selçuk
, eds.,
Begell House
,
New York
.
16.
Mackowski
,
D. W.
,
Altenkirch
,
R. A.
, and
Mengüç
,
M. P.
, 1990, “
Internal Absorption Cross Sections in a Stratified Sphere
,”
Appl. Opt.
0003-6935,
29
(
10
), pp.
1551
1559
.
17.
Lai
,
H. M.
,
Leung
,
P. T.
,
Poon
,
K. L.
, and
Young
,
K.
, 1991, “
Characterization of the Internal Energy Density in Mie Scattering
,”
J. Opt. Soc. Am. A
0740-3232,
8
(
10
), pp.
1553
1558
.
18.
Dombrovsky
,
L. A.
, 1999, “
Thermal Radiation of a Spherical Particle of Semitransparent Material
,”
High Temp.
0018-151X,
37
(
2
), pp.
260
269
.
19.
Bohren
,
C. F.
, and
Huffman
,
D. R.
, 1983,
Absorption and Scattering of Light by Small Particles
,
Wiley
,
New York
.
20.
Prishivalko
,
A. P.
, 1983,
Optical and Thermal Fields in Light Scattering Particles
,
Nauka i Tekhnika
,
Minsk, Belarus
(in Russian).
21.
Dombrovsky
,
L. A.
, 2004, “
Absorption of Thermal Radiation in Large Semi-Transparent Particles at Arbitrary Illumination of the Polydisperse System
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
25
), pp.
5511
5522
.
22.
Chan
,
S. H.
,
Cho
,
D. H.
, and
Kocamustafaogullari
,
G.
, 1983, “
Melting and Solidification With Internal Radiative Transfer—A Generalized Phase Change Model
,”
Int. J. Heat Mass Transfer
0017-9310,
26
(
4
), pp.
621
633
.
23.
Oruma
,
F. O.
,
Özişik
,
M. N.
, and
Boles
,
M. A.
, 1985, “
Effects of Anisotropic Scattering on Melting and Solidification of a Semi-Infinite, Semi-Transparent Medium
,”
Int. J. Heat Mass Transfer
0017-9310,
28
(
2
), pp.
441
449
.
24.
Rubtsov
,
N. A.
, and
Savvinova
,
N. A.
, 2003, “
Effect of Radiation Scattering on the Dynamics of the Transitional Zone During Solidification of Semitransparent Material
,”
J. Appl. Mech. Tech. Phys.
0021-8944,
44
(
5
), pp.
676
680
.
25.
Min
,
B. T.
,
Song
,
J. H.
,
Park
,
Y. S.
, and
Kim
,
J. G.
, 2006, “
A Physical and Chemical Analysis of Fast Quenched Particles of UO2 and ZrO2 Mixture
,”
J. Nucl. Mater.
0022-3115,
358
(
2–3
), pp.
243
254
.
26.
Huhtiniemi
,
I.
,
Magallon
,
D.
, and
Hohmann
,
H.
, 1999, “
Results of Recent KROTOS FCI Tests: Alumina Versus Corium Melts
,”
Nucl. Eng. Des.
0029-5493,
189
(
1–3
), pp.
379
389
.
27.
Kudinov
,
P.
,
Karbojian
,
A.
,
Ma
,
W.
, and
Dinh
,
T. -N.
, 2008, “
An Experimental Study on Debris Formation With Corium Simulant Materials
,”
Proceedings of the International Congress on Advances in Nuclear Power Plants (ICAPP‘08)
, Anaheim, CA, Jun. 8–12, Paper No. 8390.
28.
Bober
,
M.
,
Singer
,
J.
, and
Wagner
,
K.
, 1981, “
Determination of the Optical Constants of Liquid UO2 From Reflectivity Measurements
,”
Proceedings of the Eighth Symposium on Thermophysical Properties
, Gaithersburg, MD, Vol.
II
, pp.
234
244
.
29.
Bober
,
M.
,
Singer
,
J.
, and
Wagner
,
K.
, 1984, “
Bestimmung der Optischen Konstanten von Geschmolzenen Kernbrennstoffen
,”
J. Nucl. Mater.
0022-3115,
124
, pp.
120
128
.
30.
Anderson
,
E. E.
, 1976, “
Radiative Heat Transfer in Molten UO2 Based on the Rosseland Diffusion Method
,”
Nucl. Technol.
0029-5450,
30
, pp.
65
70
.
31.
Ruello
,
P.
,
Becker
,
K. D.
,
Ulrich
,
K.
,
Desgranges
,
L.
,
Petot
,
C.
, and
Petot-Ervas
,
G.
, 2004, “
Thermal Variation of the Optical Absorption of UO2: Determination of the Small Polaron Self-Energy
,”
J. Nucl. Mater.
0022-3115,
328
, pp.
46
54
.
32.
Okkonen
,
T.
, and
Sehgal
,
B. R.
, 1996, “
Influence of Melt Freezing Characteristics on Steam Explosion Energetic
,”
Proceedings of the ASME/JSME Fourth International Conference on Nuclear Engineering (ICONE-4)
, Vol.
1
, pp.
923
934
.
33.
Fink
,
J. K.
, 2000, “
Thermophysical Properties of Uranium Dioxide (Review)
,”
J. Nucl. Mater.
0022-3115,
279
, pp.
1
18
.
34.
Journeau
,
C.
,
Piluso
,
P.
, and
Frolov
,
K. N.
, 2004, “
Corium Physical Properties for Severe Accident R&D
,”
Proceedings of the ICAPP‘04
, Pittsburg, PA, pp.
1062
1071
, Paper No. 4140.
35.
Viskanta
,
R.
, and
Grosh
,
R. J.
, 1962, “
Heat Transfer by Simultaneous Conduction and Radiation in an Absorbing Medium
,”
ASME J. Heat Transfer
0022-1481,
84
(
1
), pp.
63
72
.
36.
Siegel
,
R.
, 1998, “
Transient Thermal Effects of Radiant Energy in Translucent Materials
,”
ASME J. Heat Transfer
0022-1481,
120
(
1
), pp.
4
23
.
37.
Siegel
,
R.
, 1998, “
Transient Effects of Radiative Transfer in Semitransparent Materials
,”
Int. J. Eng. Sci.
0020-7225,
36
(
12–14
), pp.
1701
1739
.
38.
Dombrovsky
,
L. A.
, 2009, “
Approximate Model for Break-Up of Solidifying Melt Particles Due to Thermal Stresses in Surface Crust Layer
,”
Int. J. Heat Mass Transfer
0017-9310,
52
(
3–4
), pp.
582
587
.
39.
Dombrovsky
,
L. A.
, 2009, “
A Model for Solid Bubbles Formation in Melt-Coolant Interaction
,”
Int. J. Heat Mass Transfer
0017-9310,
52
(
5–6
), pp.
1085
1093
.
40.
Yuan
,
M. H.
,
Yang
,
Y. H.
,
Li
,
T. S.
, and
Hu
,
Z. H.
, 2008, “
Numerical Simulation of Film Boiling on a Sphere With a Volume of Fluid Interface Tracking Method
,”
Int. J. Heat Mass Transfer
0017-9310,
51
(
7–8
), pp.
1646
1657
.
41.
Dombrovsky
,
L. A.
, and
Sazhin
,
S. S.
, 2003, “
A Parabolic Temperature Profile Model for Heating of Droplets
,”
ASME J. Heat Transfer
0022-1481,
125
(
3
), pp.
535
537
.
42.
Dombrovsky
,
L. A.
, 2007, “
An Estimate of Stability of Large Solidifying Droplets in Fuel–Coolant Interaction
,”
Int. J. Heat Mass Transfer
0017-9310,
50
(
19–20
), pp.
3832
3836
.
You do not currently have access to this content.