This note is concerned with a fixed-grid finite difference method for the solution of one-dimensional free boundary problems. The method solves for the field variables and the location of the boundary in separate steps. As a result of this decoupling, the nonlinear part of the algorithm involves only a scalar unknown, which is the location of the moving boundary. A number of examples are used to study the applicability of the method. The method is particularly useful for moving boundary problems with various conditions at the front.

1.
Crank
,
J.
, 1984,
Free and Moving Boundary Problems
,
Oxford University Press
,
New York
.
2.
Hill
,
J. M.
, 1987,
One-Dimensional Stefan Problems
,
Longman
,
New York
.
3.
Sethian
,
J.
, 1996,
Level Set Methods and Fast Marching Methods
,
Cambridge University Press
,
New York
.
4.
Javierre
,
E.
,
Vuik
,
C.
,
Vermolen
,
F. J.
, and
Van Der Zwaag
,
S.
, 2006, “
A Comparison of Numerical Methods for One-Dimensional Stefan Problems
,”
J. Comput. Appl. Math.
0377-0427,
192
, pp.
445
459
.
5.
Mitchell
,
S. L.
, and
Vynnycky
,
M.
, 2009, “
Finite-Difference Methods With Increased Accuracy and Correct Initialization for One-Dimensional Stefan Problems
,”
Appl. Math. Comput.
0096-3003,
215
, pp.
1609
1621
.
6.
Crepeau
,
J.
, and
Siahpush
,
A.
, 2008, “
Approximate Solutions to the Stefan Problems With Internal Heat Generation
,”
Heat Mass Transfer
0947-7411,
44
, pp.
787
794
.
7.
Caldwell
,
J.
, and
Kwan
,
Y. Y.
, 2003, “
On the Perturbation Method for the Stefan Problem With Time-Dependent Boundary Conditions
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
1497
1501
.
8.
Chantasiriwan
,
S.
,
Johansson
,
B. T.
, and
Lesnic
,
D.
, 2009, “
The Method of Fundamental Solution for Free Surface Stefan Problems
,”
Eng. Anal. Boundary Elem.
0955-7997,
33
, pp.
529
538
.
9.
Morton
,
K. W.
, and
Mayers
,
D. F.
, 1994,
Numerical Solution of Partial Differential Equations
,
Cambridge University Press
,
New York
.
10.
Bizhanova
,
G. I.
, 2006, “
Exact Solutions of One-Dimensional Two-Phase Free Boundary Problems for Parabolic Equations
,”
J. Math. Sci. (N.Y.)
1072-3374,
136
(
2
), pp.
3672
3681
.
You do not currently have access to this content.