The full-spectrum k-distribution (FSK) approach is a promising model for radiative transfer calculations in participating media. FSK achieves line-by-line (LBL) accuracy for homogeneous media at a tiny fraction of LBL’s high computational cost. However, inhomogeneities in gas temperature, total pressure, and component-gas mole fractions change the spectral distribution of the absorption coefficient and can cause inaccuracies in the FSK approach. In this paper, a new hybrid FSK method is proposed that combines the advantages of the multigroup FSK (MGFSK) method for temperature inhomogeneities in a single gas species and the multiscale FSK (MSFSCK) method for concentration inhomogeneities in gas mixtures. In this new hybrid method, the absorption coefficients of each gas species in the mixture are divided into M spectral groups depending on their temperature dependence. Accurate MGFSK databases are constructed for combustion gases, such as CO2 and H2O. This paper includes a detailed mathematical development of the new method, method of database construction, and sample heat transfer calculations for 1D inhomogeneous gas mixtures with step changes in temperature and species mole fractions. Performance and accuracy are compared to LBL and plain FSK calculations. The new method achieves high accuracy in radiative heat transfer calculations in participating media containing extreme inhomogeneities in both temperature and mole fractions using as few as M=2 spectral groups for each gas species, accompanied by several orders of magnitude lower computational expense as compared to LBL solutions.

1.
Lacis
,
A. A.
, and
Oinas
,
V.
, 1991, “
A Description of the Correlated-k Distribution Method for Modeling Nongray Gaseous Absorption, Thermal Emission, and Multiple Scattering in Vertically Inhomogeneous Atmospheres
,”
J. Geophys. Res.
0148-0227,
96
(
D5
), pp.
9027
9063
.
2.
Goody
,
R. M.
, and
Yung
,
Y. L.
, 1989,
Atmospheric Radiation: Theoretical Basis
, 2nd ed,
Oxford University Press
,
New York
.
3.
Denison
,
M. K.
, and
Webb
,
B. W.
, 1993, “
A Spectral Line Based Weighted-Sum-of-Gray-Gases Model for Arbitrary RTE Solvers
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
1004
1012
.
4.
Denison
,
M. K.
, and
Webb
,
B. W.
, 1995, “
The Spectral-Line-Based Weighted-Sum-of-Gray-Gases Model in Nonisothermal Nonhomogeneous Media
,”
ASME J. Heat Transfer
0022-1481,
117
, pp.
359
365
.
5.
Rivière
,
Ph.
,
Soufiani
,
A.
,
Perrin
,
M. Y.
,
Riad
,
H.
, and
Gleizes
,
A.
, 1996, “
Air Mixture Radiative Property Modelling in the Temperature Range 10000–40000K
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
56
, pp.
29
45
.
6.
Pierrot
,
L.
,
Rivière
,
Ph.
,
Soufiani
,
A.
, and
Taine
,
J.
, 1999, “
A Fictitious-Gas-Based Absorption Distribution Function Global Model for Radiative Transfer in Hot Gases
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
62
, pp.
609
624
.
7.
Modest
,
M. F.
, and
Zhang
,
H.
, 2002, “
The Full-Spectrum Correlated-k Distribution for Thermal Radiation From Molecular Gas-Particulate Mixtures
,”
ASME J. Heat Transfer
0022-1481,
124
(
1
), pp.
30
38
.
8.
Modest
,
M. F.
, 2003, “
Narrow-Band and Full-Spectrum k-Distributions for Radiative Heat Transfer-Correlated-k vs. Scaling Approximation
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
76
(
1
), pp.
69
83
.
9.
Zhang
,
H.
, and
Modest
,
M. F.
, 2002, “
A Multi-Scale Full-Spectrum Correlated-k Distribution for Radiative Heat Transfer in Inhomogeneous Gas Mixtures
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
73
(
2–5
), pp.
349
360
.
10.
Zhang
,
H.
, and
Modest
,
M. F.
, 2003, “
Scalable Multi-Group Full-Spectrum Correlated-k Distributions for Radiative Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
125
(
3
), pp.
454
461
.
11.
Goody
,
R. M.
,
West
,
R.
,
Chen
,
L.
, and
Crisp
,
D.
, 1989, “
The Correlated k Method for Radiation Calculations in Nonhomogeneous Atmospheres
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
42
, pp.
539
550
.
12.
Fu
,
Q.
, and
Liou
,
K. N.
, 1992, “
On the Correlated k-Distribution Method for Radiative Transfer in Nonhomogeneous Atmospheres
,”
J. Atmos. Sci.
0022-4928,
49
(
22
), pp.
2139
2156
.
13.
Rivière
,
P.
,
Soufiani
,
A.
, and
Taine
,
J.
, 1992, “
Correlated-k and Fictitious Gas Methods for H2O Near 2.7μm
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
48
, pp.
187
203
.
14.
Rivière
,
P.
,
Scutaru
,
D.
,
Soufiani
,
A.
, and
Taine
,
J.
, 1994, “
A New c-k Data Base Suitable From 300to2500K for Spectrally Correlated Radiative Transfer in CO2–H2O Transparent Gas Mixtures
,”
Tenth International Heat Transfer Conference
,
Taylor & Francis
, pp.
129
134
.
15.
Rivière
,
P.
,
Soufiani
,
A.
, and
Taine
,
J.
, 1995, “
Correlated-k and Fictitious Gas Model for H2O Infrared Radiation in the Voigt Regime
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
53
, pp.
335
346
.
16.
Zhang
,
H.
, and
Modest
,
M. F.
, 2003, “
Multi-Group Full-Spectrum k-Distribution Database for Water Vapor Mixtures in Radiative Transfer Calculations
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
19
), pp.
3593
3603
.
17.
Wang
,
L.
, and
Modest
,
M. F.
, 2005, “
Narrow-Band Based Multi-Scale Full-Spectrum k-Distribution Method for Radiative Transfer in Inhomogeneous Gas Mixtures
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
740
748
.
18.
Rothman
,
L. S.
,
Barbe
,
A.
,
Benner
,
D. C.
,
Brown
,
L. R.
,
Camy-Peyret
,
C.
,
Carleer
,
M. R.
,
Chance
,
K.
,
Clerbaux
,
C.
,
Dana
,
V.
,
Devi
,
V. M.
,
Fayt
,
A.
,
Flaud
,
J.-M.
,
Gamache
,
R. R.
,
Goldman
,
A.
,
Jacquemart
,
D.
,
Jucks
,
K. W.
,
Lafferty
,
W. J.
,
Mandin
,
J.-Y.
,
Massie
,
S. T.
,
Nemtchinov
,
V.
,
Newnham
,
D. A.
,
Perrin
,
A.
,
Rinsland
,
C. P.
,
Schroeder
,
J.
,
Smith
,
K. M.
,
Smith
,
M. A. H.
,
Tang
,
K.
,
Toth
,
R. A.
,
Vander Auwera
,
J.
,
Varanasi
,
P.
, and
Yoshino
,
K.
, 2003, “
The HITRAN Spectroscopic Molecular Database: Edition of 2000 Including Updates Through 2001
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
82
(
1–4
), pp.
5
44
.
19.
Rothman
,
L. S.
,
Camy-Peyret
,
C.
,
Flaud
,
J.-M.
,
Gamache
,
R. R.
,
Goldman
,
A.
,
Goorvitch
,
D.
,
Hawkins
,
R. L.
,
Schroeder
,
J.
,
Selby
,
J. E. A.
, and
Wattson
,
R. B.
, 2000, “
HITEMP, the High-Temperature Molecular Spectroscopic Database
,” Available Through http://www.hitran.comhttp://www.hitran.com.
20.
Tashkun
,
S. A.
,
Perevalov
,
V. I.
,
Bykov
,
A. D.
,
Lavrentieva
,
N. N.
, and
Teffo
,
J.-L.
, 2002, “
Carbon Dioxide Spectroscopic Databank (CDSD)
,” Available From ftp://ftp.iao.ru/pub/CDSD-1000ftp://ftp.iao.ru/pub/CDSD-1000.
21.
Modest
,
M. F.
, and
Bharadwaj
,
S. P.
, 2002, “
High-Resolution, High-Temperature Transmissivity Measurements and Correlations for Carbon Dioxide-Nitrogen Mixtures
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
73
(
2–5
), pp.
329
338
.
22.
Wang
,
L.
, and
Modest
,
M. F.
, 2005, “
A Hybrid Multi-Scale Full-Spectrum k-Distribution Method for Radiative Transfer in Inhomogeneous Gas Mixtures
,”
Proceedings of IMECE 2005
,
Orlando, FL
,
ASME
.
23.
Modest
,
M. F.
, 2003,
Radiative Heat Transfer
, 2nd ed.,
Academic
,
New York
.
24.
Wang
,
A.
, and
Modest
,
M. F.
, 2007, “
An Adaptive Emission Model for Monte Carlo Ray-Tracing in Participating Media Represented by Statistical Particle Fields
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
104
(
2
), pp.
288
296
.
25.
Modest
,
M. F.
, and
Riazzi
,
R. J.
, 2004, “
Assembly of Full-Spectrum k-Distributions From a Narrow-Band Database; Effects of Mixing Gases, Gases and Nongray Absorbing Particles, and Mixtures With Nongray Scatterers in Nongray Enclosures
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
90
(
2
), pp.
169
189
.
26.
Wang
,
A.
, and
Modest
,
M. F.
, 2005, “
High-Accuracy, Compact Database of Narrow-Band k-Distributions for Water Vapor and Carbon Dioxide
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
93
, pp.
245
261
.
You do not currently have access to this content.