The influence of particle anisotropy on the effective thermal conductivity of a suspension is experimentally investigated. Suspensions of micron-sized, silicon-carbide particles with varying aspect-ratio distributions were prepared and measured. It is shown that the conductivity of the silicon-carbide suspensions can be quantitatively predicted by the effective medium theory of Nan et al. (1997, “Effective Thermal Conductivity of Particulate Composites With Interfacial Thermal Resistance,” J. Appl. Phys. 81(10), pp. 6692–6699), provided the volume-weighted aspect ratio of the particles is used. Recent experimental data on multiwalled-nanotube-in-oil suspensions by Yang et al. (2006, “Thermal and Rheological Properties of Carbon Nanotube-in-Oil Dispersions,” J. Appl. Phys., 99(11), 114307) are also analyzed and shown to be in at least qualitative agreement with the effective-medium-theory prediction that the thermal conductivity of suspensions is enhanced by large aspect-ratio particles.

1.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
, 2001, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
0003-6951,
78
(
6
), pp.
718
720
.
2.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
, and
Grulke
,
E. A.
, 2001, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
0003-6951,
79
(
14
), pp.
2252
2254
.
3.
Patel
,
H. E.
,
Das
,
S. K.
,
Sundararajan
,
T.
,
Sreekumaran
,
Nair A.
,
George
,
B.
, and
Pradeep
,
T.
, 2003, “
Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects
,”
Appl. Phys. Lett.
0003-6951,
83
(
14
), pp.
2931
2933
.
4.
Prasher
,
R.
,
Phelan
,
P. E.
, and
Bhattacharya
,
P.
, 2006, “
Effect of Aggregation Kinetics on the Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluid)
,”
Nano Lett.
1530-6984,
6
(
7
), pp.
1529
1534
.
5.
Xue
,
Q. Z.
, 2006, “
Model for the Effective Thermal Conductivity of Carbon Nanotube Composites
,”
Nanotechnology
0957-4484,
17
(
6
), pp.
1655
1660
.
6.
Nan
,
C.-W.
,
Liu
,
G.
,
Lin
,
Y.
, and
Li
,
M.
, 2004, “
Interface Effect on Thermal Conductivity of Carbon Nanotube Composites
,”
Appl. Phys. Lett.
0003-6951,
85
(
16
), pp.
3549
3551
.
7.
Zhou
,
X. F.
, and
Gao
,
L.
, 2006, “
Effective Thermal Conductivity in Nanofluids of Nonspherical Particles With Interfacial Thermal Resistance: Differential Effective Medium Theory
,”
J. Appl. Phys.
0021-8979,
100
(
2
),
024913
.
8.
Maxwell
,
J. C.
, 1954,
A Treatise on Electricity and Magnetism
,
Dover
,
New York
.
9.
Heine
,
M. C.
,
Vicente
,
J.
, and
Klingenberg
,
D. J.
, 2006, “
Thermal Transport in Sheared Electro- and Magnetorheological Fluids
,”
Phys. Fluids
1070-6631,
18
(
2
),
023301
.
10.
Schueler
,
R.
,
Petermann
,
J.
,
Schulte
,
K.
, and
Wentzel
,
H. P.
, 1998, “
Agglomeration and Electrical Percolation Behavior of Carbon Black Dispersed in Epoxy Resin
,”
J. Appl. Polym. Sci.
0021-8995,
63
(
13
), pp.
1741
1746
.
11.
Fricke
,
H.
, 1924, “
Mathematical Treatment of the Electric Conductivity and Capacity of the Dispersed Systems
,”
Phys. Rev.
0031-899X,
24
(
5
), pp.
575
587
.
12.
Nan
,
C.-W.
,
Birringer
,
R.
,
Clarke
,
D. R.
, and
Gleiter
,
H.
, 1997, “
Effective Thermal Conductivity of Particulate Composites With Interfacial Thermal Resistance
,”
J. Appl. Phys.
0021-8979,
81
(
10
), pp.
6692
6699
.
13.
Nan
,
C.-W.
,
Shi
,
Z.
, and
Lin
,
Y.
, 2003, “
A Simple Model for Thermal Conductivity of Carbon Nanotube-Based Composites
,”
Chem. Phys. Lett.
0009-2614,
375
(
5–6
), pp.
666
669
.
14.
Every
,
A. G.
,
Tzou
,
Y.
,
Hasselman
,
D. P. H.
, and
Raj
,
R.
, 1992, “
The Effect of Particle Size on the Thermal Conductivity of ZnS∕Diamond Composites
,”
Acta Metall. Mater.
0956-7151,
40
(
1
), pp.
123
129
.
15.
Xie
,
H.
,
Wang
,
J.
,
Xi
,
T.
,
Liu
,
Y.
, and
Ai
,
F.
, 2002, “
Thermal Conductivity of Suspension Containing SiC Particles
,”
J. Mater. Sci. Lett.
0261-8028,
21
(
3
), pp.
193
195
.
16.
Yang
,
B.
, and
Han
,
Z. H.
, 2006, “
Temperature-Dependent Thermal Conductivity of Nanorod-Based Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
89
(
8
),
083111
.
17.
2005,
The CRC Handbook of Mechanical Engineering
,
F.
Kreith
and
D. Y.
Goswami
, eds.,
CRC
,
New York
.
18.
Slack
,
G. A.
, 1964, “
Thermal Conductivity of Pure and Impure Silicon, Silicon Carbide and Diamond
,”
J. Appl. Phys.
0021-8979,
35
(
12
), pp.
3460
3466
.
19.
Morelli
,
D.
,
Heremans
,
J.
,
Beetz
,
C.
,
Woo
,
W. S.
,
Harris
,
G.
, and
Taylor
,
C.
, 1993, “
Carrier Concentration Dependence of the Thermal Conductivity of Silicon Carbide
,”
Proceedings of the Fifth Silicon Carbide and Related Materials Conference
,
Washington, DC
, Nov. 1–3, pp.
313
315
.
20.
Choi
,
S. R.
,
Kim
,
D.
,
Choa
,
S.-H.
,
Lee
,
S.-H.
, and
Kim
,
H.-K.
, 2006, “
Thermal Conductivity of AlN and SiC Thin Films
,”
Int. J. Thermophys.
0195-928X,
27
(
3
), pp.
896
905
.
21.
Henager
,
C. H.
, Jr.
, and
Pawlewicz
,
W. T.
, 1993, “
Thermal Conductivities of Thin, Sputtered Optical Films
,”
Appl. Opt.
0003-6935,
32
(
1
), pp.
91
101
.
22.
Goldberg
,
Y.
,
Levinshtein
,
M.
, and
Rumyantsev
,
S.
, 2001, “
Silicon Carbide
,”
Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe
,
M. E.
Levinshtein
,
S. L.
Rumyantsev
, and
M. S.
Shur
, eds.,
Wiley
,
New York
, pp.
93
147
.
23.
Snead
,
L. L.
,
Nozawa
,
T.
,
Katoh
,
Y.
,
Byun
,
T.-S.
,
Kondo
,
S.
, and
Petti
,
D. A.
, 2007, “
Handbook of SiC Properties for Fuel Performance Modeling
,”
J. Nucl. Mater.
0022-3115,
371
(
1–3
), pp.
329
377
.
24.
Berber
,
S.
,
Kwon
,
Y.-K.
, and
Tománek
,
D.
, 2000, “
Unusually High Thermal Conductivity of Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
84
(
20
), pp.
4613
4616
.
25.
Che
,
J.
,
Cagın
,
T.
, and
Goddard
,
W. A.
III
, 2000, “
Thermal Conductivity of Carbon Nanotubes
,”
Nanotechnology
0957-4484,
11
(
2
), pp.
65
69
.
26.
Choi
,
T.-Y.
,
Poulikakos
,
D.
,
Tharian
,
J.
, and
Sennhauser
,
U.
, 2006, “
Measurement of the Thermal Conductivity of Individual Carbon Nanotubes by the Four-Point Three-ω Method
,”
Nano Lett.
1530-6984,
6
(
8
), pp.
1589
1593
.
27.
Yang
,
Y.
,
Grulke
,
E. A.
,
Zhang
,
Z. G.
, and
Wu
,
G.
, 2006, “
Thermal and Rheological Properties of Carbon Nanotube-in-Oil Dispersions
,”
J. Appl. Phys.
0021-8979,
99
(
11
),
114307
.
28.
Ju
,
Y. S.
, 2005, “
Impact of Nonequilibrium Between Electrons and Phonons on Heat Transfer in Metallic Nanoparticles Suspended in Dielectric Media
,”
ASME J. Heat Transfer
0022-1481,
127
(
12
), pp.
1400
1402
.
29.
Wilson
,
M. W.
,
Hu
,
X.
,
Cahill
,
D. G.
, and
Braun
,
P. V.
, 2002, “
Colloidal Metal Particles as Probes of Nanoscale Thermal Transport in Fluids
,”
Phys. Rev. B
0163-1829,
66
(
22
),
224301
.
30.
Huxtable
,
S. T.
,
Cahill
,
D. G.
,
Shenogin
,
S.
,
Xue
,
L.
,
Ozisik
,
R.
,
Barone
,
P.
,
Usrey
,
M.
,
Strano
,
M. S.
,
Siddons
,
G.
,
Shim
,
M.
, and
Keblinski
,
P.
, 2003, “
Interfacial Heat Flow in Carbon Nanotube Suspensions
,”
Nat. Mater.
1476-1122,
2
(
11
), pp.
731
734
.
31.
Shenogin
,
S.
,
Xue
,
L.
,
Ozisik
,
R.
,
Keblinski
,
P.
, and
Cahill
,
D. G.
, 2003, “
Role of Thermal Boundary Resistance on the Heat Flow in Carbon-Nanotube Composites
,”
J. Appl. Phys.
0021-8979,
95
(
12
), pp.
8136
8144
.
32.
Andrews
,
R.
,
Jacques
,
D.
,
Rao
,
A. M.
,
Derbyshire
,
F.
,
Qian
,
D.
,
Fan
,
X.
,
Dickey
,
E. C.
, and
Chen
,
J.
, 1999, “
Continuous Production of Aligned Carbon Nanotubes: A Step Closer to Commercial Realization
,”
Chem. Phys. Lett.
0009-2614,
303
(
5
), pp.
467
474
.
33.
Prasher
,
R.
,
Evans
,
W.
,
Meakin
,
P.
,
Fish
,
J.
,
Phelan
,
P.
, and
Keblinski
,
P.
, 2006, “
Effect of Aggregation on Thermal Conduction in Colloidal Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
89
(
14
),
143119
.
34.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
, 2005, “
Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids)
,”
Phys. Rev. Lett.
0031-9007,
94
(
2
),
025901
.
35.
Krishnamurthy
,
S.
,
Bhattacharya
,
P.
,
Phelan
,
P. E.
, and
Prasher
,
S. P.
, 2006, “
Enhanced Mass Transport in Nanofluids
,”
Nano Lett.
1530-6984,
6
(
3
), pp.
419
423
.
36.
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
, 2002, “
Mechanism of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)
,”
Int. J. Heat Mass Transfer
0017-9310,
45
(
4
), pp.
855
863
.
You do not currently have access to this content.