Synthetic jets are meso or microscale fluidic devices, which operate on the “zero-net-mass-flux” principle. However, they impart a positive net momentum flux to the external environment and are able to produce the cooling effect of a fan sans its ducting, reliability issues, and oversized dimensions. The rate of heat removal from the thermal source is expected to depend on the location, orientation, strength, and shape of the jet. In the current study, we investigate the impact of jet location and orientation on the cooling performance via time-dependent numerical simulations and verify the same with experimental results. We firstly present the experimental study along with the findings. Secondly, we present the numerical models/results, which are compared with the experiments to gain the confidence in the computational methodology. Finally, a sensitivity evaluation has been performed by altering the position and alignment of the jet with respect to the heated surface. Two prime orientations of the jet have been considered, namely, perpendicular and cross jet impingement on the heater. It is found that if jet is placed at an optimum location in either impingement or cross flow position, it can provide similar enhancements.

1.
Mittal
,
R.
, and
Rampunggoon
,
P.
, 2002, “
On Virtual Aero-Shaping Effect of Synthetic Jets
,”
Phys. Fluids
1070-6631,
14
(
4
), pp.
1533
1536
.
2.
Smith
,
D.
,
Amitay
,
M.
,
Kibens
,
V.
,
Parekh
,
D.
, and
Glezer
,
A.
, 1998, “
Modification of Lifting Body Aerodynamics Using Synthetic Jet Actuators
,” AIAA Paper No. 1998-0209.
3.
Crook
,
A.
,
Sadri
,
A. M.
, and
Wood
,
N. J.
, 1999, “
The Development and Implementation of Synthetic Jets for the Control of Separated Flow
,” AIAA Paper No. 1999-3176.
4.
Mittal
,
R.
,
Rampunggoon
,
P.
, and
Udaykumar
,
H. S.
, 2001, “
Interaction of a Synthetic Jet With a Flat Plate Boundary Layer
,” AIAA Paper No. 2001-2773.
5.
Smith
,
B. L.
, and
Glezer
,
A.
, 2002, “
Jet Vectoring Using Synthetic Jets
,”
J. Fluid Mech.
0022-1120,
458
, pp.
1
34
.
6.
Rathnasingham
,
R.
, and
Breur
,
K. S.
, 1997, “
System Identifcation and Control of Turbulent Boundary Layer
,”
Phys. Fluids
1070-6631,
9
(
7
), pp.
1867
1869
.
7.
Lee
,
C. Y.
, and
Glodstein
,
D. B.
, 2001, “
DNS of Microjets for Turbulent Boundary Layer Control
,” AIAA Paper No. 2001-1013.
8.
Mahalingam
,
R.
,
Rumigny
,
N.
, and
Glezer
,
A.
, 2004, “
Thermal Management Using Synthetic Jet Ejectors
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
27
(
3
), pp.
439
444
.
9.
Mahalingam
,
R.
, and
Glezer
,
A.
, 2005, “
Design and Thermal Characteristics of a Synthetic Jet Ejector Heat Sink
,”
J. Electron. Packag.
1043-7398,
127
, pp.
172
177
.
10.
Holman
,
R.
,
Utturkar
,
Y.
,
Mittal
,
R.
,
Smith
,
B.
, and
Cattafesta
,
L.
, 2005, “
Formation Criterion for Synthetic Jets
,”
AIAA J.
0001-1452,
43
(
10
), pp.
2110
2116
.
11.
Li
,
S.
, 2005, “
A Numerical Study of Micro Synthetic Jet and Its Applications in Thermal Management
,” Ph.D. thesis, Georgia Institute of Technology.
12.
Erbas
,
N.
,
Koklu
,
M.
, and
Baysal
,
O.
, 2005, “
Synthetic Jets for Thermal Management of Microelectronic Chips
,”
Proceedings of IMECE
, Paper No. IMECE 2005-81419.
13.
Timchenko
,
V.
,
Reizes
,
J.
, and
Leonardi
,
E.
, 2004, “
A Numerical Study of Enhanced Micro-Channel Cooling Using a Synthetic Jet Actuator
,” 15th Australian Fluid Mechanics Conference,
Sydney Australia
.
14.
Utturkar
,
Y.
,
Mittal
,
R.
,
Rampunggoon
,
P.
, and
Cattafesta
,
L.
, 2003, “
Sensitivity of Synthetic Jets to the Design of the Jet Cavity
,” AIAA Paper No. 2002-0214.
15.
Gallas
,
Q.
,
Holman
,
R.
,
Raju
,
R.
,
Mittal
,
R.
,
Sheplak
,
M.
, and
Cattafesta
,
L.
, 2004, “
Low Dimensional Modeling of Zero-Net-Mass-Flux Actuators
,” AIAA Paper No. 2004-2413.
16.
Raju
,
R.
,
Mittal
,
R.
,
Gallas
,
Q.
, and
Cattafesta
,
L.
, 2005, “
Scaling of Vorticity Flux and Entrance Length Effects in Zero-Net-Mass-Flux Devices
,” AIAA Paper No. 2005-4751.
17.
Yassour
,
Y.
,
Stricker
,
J.
, and
Wolfshtein
,
M.
, 1986, “
Heat Transfer From a Small Pulsating Jet
,”
Proceedings of the Eighth International Conference
,
San Francisco, CA
, Aug. 17–22, Vol.
3
, pp.
1183
1186
.
18.
Coe
,
D. J.
,
Allen
,
M. G.
,
Trautman
,
M. A.
, and
Glezer
,
A.
, 1994, “
Micromachined Jet for Manipulation of Macro Flow
,” Solid-State Sensor and Actuation Workshop,
Hilton Head Island, SC
, Jun 13–16.
19.
Garg
,
J.
,
Arik
,
M.
,
Weaver
,
S.
,
Wetzel
,
T.
, and
Saddoughi
,
S.
, 2005, “
Meso Pulsating Jet for Electronics Cooling
,”
ASME J. Electron. Packag.
1043-7398,
127
(
4
), pp.
503
551
.
20.
Utturkar
,
Y.
,
Arik
,
M.
, and
Gursoy
,
M.
, 2006, “
An Experimental and Computational Sensitivity Analysis of Synthetic Jet Cooling Performance
,” ASME International Mechanical Engineering Congress and Exposition,
Chicago, IL
, Nov. 5-10.
21.
Gillespie
,
M. B.
,
Black
,
W. Z.
,
Rinehart
,
C.
, and
Glezer
,
A.
, 2006, “
Local Convective Heat Transfer from a Constant Heat Flux Flat Plate Cooled by Synthetic Air Jets
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
990
1000
.
22.
Pavlova
,
A.
, and
Amitay
,
M.
, 2006, “
Electronic Cooling Using Synthetic Jet Impingement
,”
ASME J. Heat Transfer
0022-1481,
128
, (
9
), pp.
897
907
.
23.
Arik
,
M.
, 2007, “
An Investigation Into Feasibility of Impingement Heat Transfer and Acoustic Abatement of Meso Scale Synthetic Jets
,”
Appl. Therm. Eng.
1359-4311,
27
, pp.
1483
1494
.
24.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
, pp.
3
17
.
25.
Issa
,
R.
, 1985, “
Solution of the Implicitly Discretized Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
0021-9991,
62
, pp.
40
65
.
26.
Kotapati
,
R. B.
, and
Mittal
,
R.
, 2005, “
Time-Accurate Three-Dimensional Simulations of Synthetic Jets in Quiescent Air
,” AIAA Paper No. 2005-0103.
You do not currently have access to this content.