The effect of temperature modulation on the onset of thermal convection in an electrically conducting fluid-saturated-porous medium, heated from below, has been studied using linear stability analysis. The amplitudes of temperature modulation at the lower and upper surfaces are considered to be very small. The porous medium is confined between two horizontal walls and subjected to a vertical magnetic field; flow in porous medium is characterized by Brinkman–Darcy model. Considering only infinitesimal disturbances, and using perturbation procedure, the combined effect of temperature modulation and vertical magnetic field on thermal instability has been studied. The correction in the critical Rayleigh number is calculated as a function of frequency of modulation, Darcy number, Darcy Chandrasekhar number, magnetic Prandtl number, and the nondimensional group number χ. The influence of the magnetic field is found to be stabilizing. Furthermore, it is also found that the onset of convection can be advanced or delayed by proper tuning of the frequency of modulation. The results of the present model have been compared with that of Darcy model.

1.
Wallace
,
W. E.
,
Pierce
,
C. I.
, and
Sawyer
,
W. K.
, 1969, “
Experiments on the Flow of Mercury in Porous Media in a Transverse Magnetic Field
,” Bureau of Mines, Report No. RI-7259(PB-184327).
2.
Nield
,
D. A.
, and
Bejan
,
A.
, 2006,
Convection in Porous Media
,
Springer-Verlag
,
New York
.
3.
Patil
,
R. P.
, and
Rudraiah
,
N.
, 1973, “
Stability of Hydromagnetic Thermoconvective Flow Through Porous Medium
,”
ASME J. Appl. Mech.
0021-8936,
E40
, pp.
879
884
.
4.
Rudraiah
,
N.
, and
Vortmeyer
,
D.
, 1978, “
Stability of Finite-Amplitude and Overstable Convection of a Conducting Fluid Through Fixed Porous Bed
,”
Waerme- Stoffuebertrag.
0042-9929,
11
, pp.
241
254
.
5.
Rudraiah
,
N.
, 1984, “
Linear and Non-Linear Megnetoconvection in a Porous Medium
,”
Proc. Indian Acad. Sci., Math. Sci.
0253-4142,
93
, pp.
117
135
.
6.
Alchaar
,
S.
,
Vasseur
,
P.
, and
Bilgen
,
E.
, 1995, “
Effect of a Magnetic Field on the Onset of Convection in a Porous Medium
,”
Heat Mass Transfer
0947-7411,
30
, pp.
259
267
.
7.
Alchaar
,
S.
,
Vasseur
,
P.
, and
Bilgen
,
E.
, 1995, “
Hydromagnetic Natural Convection in a Tilted Rectangular Porous Enclosure
,”
Numer. Heat Transfer, Part A
1040-7782,
27
, pp.
107
127
.
8.
Bian
,
W.
,
Vasseur
,
P.
, and
Bilgen
,
E.
, 1996, “
Effect of an External Magnetic Field on Buoyancy Driven Flow in a Shallow Porous Cavity
,”
Numer. Heat Transfer, Part A
1040-7782,
29
, pp.
625
638
.
9.
Bian
,
W.
,
Vasseur
,
P.
,
Bilgen
,
E.
, and
Meng
,
F.
, 1996, “
Effect of an Electromagnetic Field on Natural Convection in an Inclined Porous Layer
,”
Int. J. Heat Fluid Flow
0142-727X,
17
, pp.
36
44
.
10.
Oldenburg
,
C. M.
,
Borglin
,
S. E.
, and
Moridis
,
G. J.
, 2000, “
Numerical Simulation of Ferrofluid Flow for Subsurface Environmental Engineering Applications
,”
Transp. Porous Media
0169-3913,
38
, pp.
319
344
.
11.
Borglin
,
S. E.
,
Moridis
,
G. J.
, and
Oldenburg
,
C. M.
, 2000, “
Experimental Studies of Flow of Ferrofluid in Porous Media
,”
Transp. Porous Media
0169-3913,
41
, pp.
61
80
.
12.
Sekar
,
R.
,
Vaidyanathan
,
G.
, and
Ramanathan
,
A.
, 1993, “
The Ferroconvection in Fluids Saturating a Rotating Densely Packed Porous Medium
,”
Int. J. Eng. Sci.
0020-7225,
31
(
2
), pp.
241
250
.
13.
Sekar
,
R.
, and
Vaidyanathan
,
G.
, 1993, “
Convective Instability of a Magnetized Ferrofluid in a Rotating Porous Medium
,”
Int. J. Eng. Sci.
0020-7225,
31
(
8
), pp.
1139
1150
.
14.
Desaive
,
T.
,
Hennenberg
,
M.
, and
Dauby
,
P. C.
, 2004, “
Stabilite Thermomagneto-Convective d’un Ferrofluide dans une Couche Poreuse en Rotation
,”
Mecanique & Industries
,
5
, pp.
621
625
.
15.
Sunil
,
Divya
, and
Sharma
,
R. C.
, 2005, “
The Effect of Magnetic Field Dependent Viscosity on Thermosolutal Convection in a Ferromagnetic Fluid Saturating a Porous Medium
,”
Transp. Porous Media
0169-3913,
60
, pp.
251
274
.
16.
Sunil
,
Divya
, and
Sharma
,
R. C.
, 2004, “
Effect of Rotation on Ferromagnetic Fluid Heated and Soluted From Below Saturating a Porous Media
,”
J. Geophys. Eng.
1742-2132,
1
, pp.
116
127
.
17.
Saravanan
,
S.
, and
Yamaguchi
,
H.
, 2005, “
Onset of Centrifugal Convection in a Magnetic-Fluid-Saturated Porous Medium
,”
Phys. Fluids
1070-6631,
17
, p.
084105
.
18.
Venezian
,
G.
, 1969, “
Effect of Modulation on the Onset of Thermal Convection
,”
J. Fluid Mech.
0022-1120,
35
(
2
), pp.
243
254
.
19.
Rosenblat
,
S.
, and
Tanaka
,
G. A.
, 1971, “
Modulation of Thermal Convection Instability
,”
Phys. Fluids
0031-9171,
14
(
7
), pp.
1319
1322
.
20.
Roppo
,
M. N.
,
Davis
,
S. H.
, and
Rosenblat
,
S.
, 1984, “
Benard Convection With Time-Periodic Heating
,”
Phys. Fluids
0031-9171,
27
(
4
), pp.
796
803
.
21.
Bhadauria
,
B. S.
, and
Bhatia
,
P. K.
, 2002, “
Time-Periodic Heating of Rayleigh-Benard Convection
,”
Phys. Scr.
0031-8949,
66
(
1
), pp.
59
65
.
22.
Bhadauria
,
B. S.
, 2006, “
Time-Periodic Heating of Rayleigh-Benard Convection in a Vertical Magnetic Field
,”
Phys. Scr.
0031-8949,
73
(
3
), pp.
296
302
.
23.
Chhuon
,
B.
, and
Caltagirone
,
J. P.
, 1979, “
Stability of a Horizontal Porous Layer With Timewise Periodic Boundary Conditions
,”
ASME J. Heat Transfer
0022-1481,
101
, pp.
244
248
.
24.
Rudraiah
,
N.
, and
Malashetty
,
M. S.
, 1990, “
Effect of Modulation on the Onset of Convection in a Sparsely Packed Porous Layer
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
685
689
.
25.
Malashetty
,
M. S.
, and
Basavaraja
,
D.
, 2002, “
Rayleigh-Benard Convection Subject to Time Dependent Wall Temperature∕Gravity in a Fluid Saturated Anisotropic Porous Medium
,”
Heat Mass Transfer
0947-7411,
38
, pp.
551
563
.
26.
Bhadauria
,
B. S.
, 2007, “
Thermal Modulation of Raleigh-Benard Convection in a Sparsely Packed Porous Medium
,”
J. Porous Media
1091-028X,
10
(
2
), pp.
175
188
.
27.
Bhadauria
,
B. S.
, 2007, “
Fluid Convection in a Rotating Porous Layer Under Modulated Temperature on the Boundaries
,”
Transp. Porous Media
0169-3913,
67
(
2
), pp.
297
315
.
28.
Bhadauria
,
B. S.
, 2007, “
Magnetofluidconvection in a Rotating Porous Layer Under Modulated Temperature on the Boundaries
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
835
843
.
29.
Vadasz
,
P.
, 1998, “
Coriolis Effect on Gravity-Driven Convection in a Rotating Porous Layer Heated From Below
,”
J. Fluid Mech.
0022-1120,
376
, pp.
351
375
.
30.
Givler
,
R. C.
, and
Altobelli
,
S. A.
, 1994, “
A Determination of the Effective Viscosity for the Brinkman-Forchheimer Flow Model
,”
J. Fluid Mech.
0022-1120,
258
, pp.
355
370
.
31.
Nayfeh
,
A. H.
, 1981,
Introduction to Perturbation Techniques
,
Wiley-Interscience
,
New York
.
32.
Malkus
,
W. V. R.
, and
Veronis
,
G.
, 1958, “
Finite Amplitude Cellular Convection
,”
J. Fluid Mech.
0022-1120,
4
(
3
), pp.
225
232
.
33.
Chandrasekhar
,
S.
, 1961,
Hydrodynamic and Hydromagnetic Stability
,
Oxford University Press
,
London
.
34.
Krishnamurti
,
R. E.
, 1967, Ph.D. thesis, University of California, Los Angeles.
35.
Veronis
,
G.
, 1963, “
Penetrative Convection
,”
Astrophys. J.
0004-637X,
137
, pp.
641
663
.
You do not currently have access to this content.