Steady laminar free convection in air from a pair of misaligned, parallel horizontal cylinders, i.e., a pair of parallel cylinders with their axes set in a plane inclined with respect to the gravity vector, is studied numerically. A specifically developed computer code based on the SIMPLE-C algorithm is used for the solution of the dimensionless mass, momentum, and energy transfer governing equations. Results are presented for different values of the center-to-center cylinder spacing from 1.4 up to 10 diameters, the tilting angle of the two-cylinder array from 0degto90deg, and the Rayleigh number based on the cylinder diameter in the range between 103 and 107. It is found that the heat transfer rates at both cylinder surfaces may in principle be traced back to the combined contributions of the so-called plume effect and chimney effect, which are the mutual interactions occurring in the vertical and horizontal alignments, respectively. In addition, at any misalignment angle, an optimum spacing between the cylinders for the maximum heat transfer rate, which decreases with increasing the Rayleigh number, does exist. Heat transfer dimensionless correlating equations are proposed for any individual cylinder and for the pair of cylinders as a whole.

1.
Eckert
,
E. R. G.
, and
Soehngen
,
E. E.
, 1948, “
Studies on Heat Transfer in Laminar Free Convection With the Zehnder–Mach Interferometer
,” AF Technical Report No. 5747, USAF Air Material Command, Wright-Patterson Air Force Base, Ohio.
2.
Lieberman
,
J.
, and
Gebhart
,
B.
, 1969, “
Interaction in Natural Convection From an Array of Heated Elements, Experimental
,”
Int. J. Heat Mass Transfer
0017-9310,
12
, pp.
1385
1396
.
3.
Marsters
,
G. F.
, 1972, “
Arrays of Heated Horizontal Cylinders in Natural Convection
,”
Int. J. Heat Mass Transfer
0017-9310,
15
, pp.
921
933
.
4.
Sparrow
,
E. M.
, and
Niethammer
,
J. E.
, 1981, “
Effect of Vertical Separation Distance and Cylinder-to-Cylinder Temperature Imbalance on Natural Convection for a Pair of Horizontal Cylinders
,”
ASME J. Heat Transfer
0022-1481,
103
, pp.
638
644
.
5.
Tokura
,
I.
,
Saito
,
H.
,
Kisinami
,
K.
, and
Muramoto
,
K.
, 1983, “
An Experimental Study of Free Convection Heat Transfer From a Horizontal Cylinder in a Vertical Array Set in Free Space Between Parallel Walls
,”
ASME J. Heat Transfer
0022-1481,
105
, pp.
102
107
.
6.
Sadeghipour
,
M. S.
, and
Asheghi
,
M.
, 1994, “
Free Convection Heat Transfer From Arrays of Vertically Separated Horizontal Cylinders at Low Rayleigh Numbers
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
103
109
.
7.
Chouikh
,
R.
,
Guizani
,
A.
,
Maalej
,
M.
, and
Belghith
,
A.
, 1999, “
Numerical Study of the Laminar Natural Convection Flow Around an Array of Two Horizontal Isothermal Cylinders
,”
Int. Commun. Heat Mass Transfer
0735-1933,
26
, pp.
329
338
.
8.
Corcione
,
M.
, 2005, “
Correlating Equations for Free Convection Heat Transfer From Horizontal Isothermal Cylinders Set in a Vertical Array
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
3660
3673
.
9.
Sparrow
,
E. M.
, and
Boessneck
,
D. S.
, 1983, “
Effect of Traverse Misalignment on Natural Convection From a Pair of Parallel, Vertically Stacked, Horizontal Cylinders
,”
ASME J. Heat Transfer
0022-1481,
105
, pp.
241
247
.
10.
Farouk
,
B.
, and
Guceri
,
S. I.
, 1983, “
Natural Convection From Horizontal Cylinders in Interacting Flow Fields
,”
Int. J. Heat Mass Transfer
0017-9310,
26
, pp.
231
243
.
11.
Launder
,
B. E.
, and
Massey
,
T. H.
, 1978, “
The Numerical Prediction of Viscous Flow and Heat Transfer in Tube Banks
,”
ASME J. Heat Transfer
0022-1481,
100
, pp.
565
571
.
12.
Van Doormaal
,
J. P.
, and
Raithby
,
G. D.
, 1984, “
Enhancements of the Simple Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
0149-5720,
11
, pp.
147
163
.
13.
Patankar
,
S. V.
, and
Spalding
,
D. B.
, 1972, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transfer
0017-9310,
15
, pp.
1787
1797
.
14.
Leonard
,
B. P.
, 1979, “
A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
19
, pp.
59
78
.
15.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, DC
.
16.
Patankar
,
S. V.
, 1988, “
Recent Developments in Computational Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
110
, pp.
1037
1045
.
17.
Saitoh
,
T.
,
Sajiki
,
T.
, and
Maruhara
,
K.
, 1993, “
Bench Mark Solutions to Natural Convection Heat Transfer Problem Around a Horizontal Circular Cylinder
,”
Int. J. Heat Mass Transfer
0017-9310,
36
, pp.
1251
1259
.
18.
Churchill
,
S. W.
, and
Chu
,
H. H. S.
, 1975, “
Correlating Equations for Laminar and Turbulent Free Convection from a Horizontal Cylinder
,”
Int. J. Heat Mass Transfer
0017-9310,
18
, pp.
1049
1053
.
19.
Gebhart
,
B.
,
Pera
,
L.
, and
Schorr
,
A. W.
, 1970, “
Steady Laminar Natural Convection Plumes Above a Horizontal Line Heat Source
,”
Int. J. Heat Mass Transfer
0017-9310,
13
, pp.
161
171
.
You do not currently have access to this content.