Nanofluids, i.e., liquids containing nanometer sized metallic or nonmetallic solid particles, show an increase in thermal conductivity compared to that of the pure liquid. In this paper, a simple model for predicting thermal conductivity of nanofluids based on Brownian motion of nanoparticles in the liquid is developed. A general expression for the effective thermal conductivity of a colloidal suspension is derived by using ensemble averaging under the assumption of small departures from equilibrium and the presence of pairwise additive interaction potential between the nanoparticles. The resulting expression for thermal conductivity enhancement is applied to the nanofluids with a polar base fluid, such as water or ethylene glycol, by assuming an effective double layer repulsive potential between pairs of nanoparticles. It is shown that the model predicts a particle size and temperature dependent thermal conductivity enhancement. The results of the calculation are compared with the experimental data for various nanofluids containing metallic and nonmetallic nanoparticles.

1.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Thompson
,
L. J.
, and
Lee
,
S.
, 1997, “
Enhanced Thermal Conductivity Through the Development of Nanofluids
,”
Proceedings of the Symposium on Nanophase and Nanocomposite Materials II
, Vol.
457
, pp.
3
11
.
2.
Lee
,
S.
,
Choi
,
S. U. S.
,
Lu
,
S.
, and
Eastman
,
J. A.
, 1999, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
280
289
.
3.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Yu
,
W.
, and
Thompson
,
L. J.
, 2001, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
0003-6951,
78
, pp.
718
720
.
4.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F. E.
, and
Grulke
,
E. A.
, 2001, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
0003-6951,
79
, pp.
2252
2254
.
5.
Xie
,
H.
,
Wang
,
J.
,
Xi
,
T.
,
Liu
,
Y.
,
Ai
,
F.
, and
Wu
,
Q.
, 2002, “
Thermal Conductivity Enhancement of Suspensions Containing Nanosized Alumina Particles
,”
J. Appl. Phys.
0021-8979,
91
, pp.
4568
4572
.
6.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
, 2003, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
567
574
.
7.
Patel
,
H. E.
,
Das
,
S. K.
,
Sundararajan
,
T.
,
Nair
,
A. S.
,
George
,
B.
, and
Pradeep
,
T.
, 2003, “
Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects
,”
Appl. Phys. Lett.
0003-6951,
83
, pp.
2931
2933
.
8.
Xie
,
H.
,
Lee
,
H.
,
Youn
,
W.
, and
Choi
,
M.
, 2003, “
Nanofluids Containing Multiwalled Carbon Nanotubes and Their Enhanced Thermal Conductivities
,”
J. Appl. Phys.
0021-8979,
94
, pp.
4967
4971
.
9.
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
, 2002, “
Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
855
863
.
10.
Eastman
,
J. A.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Keblinski
,
P.
, 2004, “
Thermal Transport in Nanofluids
,”
Annu. Rev. Mater. Res.
1531-7331,
34
, pp.
219
246
.
11.
Keblinski
,
P.
,
Eastman
,
J. A.
, and
Cahill
,
D. A.
, 2005, “
Nanofluids for Thermal Transport
,”
Mater. Today
1369-7021,
8
, pp.
36
44
.
12.
Jang
,
S. P.
, and
Choi
,
S. U. S.
, 2004, “
Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
84
, pp.
4316
4318
.
13.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
, 1962, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
Ind. Eng. Chem. Fundam.
0196-4313,
1
, pp.
187
191
.
14.
Bhattacharya
,
P.
,
Saha
,
S. K.
,
Yadav
,
A.
, and
Phelan
,
P. E.
, 2004, “
Brownian Dynamics Simulation to Determine the Effective Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
0021-8979,
95
, pp.
6492
6494
.
15.
Xuan
,
Y.
,
Li
,
Q.
, and
Hu
,
W.
, 2003, “
Aggregation Structure and Thermal Conductivity of Nanofluids
,”
AIChE J.
0001-1541,
49
, pp.
1038
1043
.
16.
Xue
,
Q.
, 2003, “
Model for Effective Thermal Conductivity of Nanofluids
,”
Phys. Lett. A
0375-9601,
307
, pp.
313
317
.
17.
Xue
,
L.
,
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
, 2004, “
Effect of Liquid Layering at the Liquid-Solid Interface on Thermal Transport
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
4277
4284
.
18.
Wang
,
B. X.
,
Zhou
,
L. P.
, and
Peng
,
X. F.
, 2003, “
A Fractal Model for Predicting the Effective Thermal Conductivity of Liquid With Suspensions of Nanoparticles
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2665
2672
.
19.
Kumar
,
D. H.
,
Patel
,
H. E.
,
Kumar
,
V. R. R.
,
Sundararajan
,
T.
,
Pradeep
,
T.
, and
Das
,
S. K.
, 2004, “
Model for Heat Conduction in Nanofluids
,”
Phys. Rev. Lett.
0031-9007,
93
, p.
144301
.
20.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
, 2005, “
Thermal Conductivity of Nanoscale Colloidal Solutions (nanofluids)
,”
Phys. Rev. Lett.
0031-9007,
94
, p.
025901
.
21.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
, 2006, “
Brownian-Motion-Based Convective-Conductive Model for the Effective Thermal Conductivity of Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
588
595
.
22.
Wang
,
J.
,
Chen
,
G.
, and
Zhang
,
Z.
, 2005, “
A Model of Nanofluids Thermal Conductivity
,”
Proceedings of 2005 ASME Summer Heat Transfer Conference
, Jul. 17–22.
23.
Vadasz
,
P.
, 2006, “
Heat Conduction in Nanofluid Suspensions
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
465
477
.
24.
Xuan
,
Y.
, and
Li
,
Q.
, 2003, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
151
155
.
25.
Buongiorno
,
J.
, 2006, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
240
250
.
26.
Russel
,
W. B.
,
Saville
,
D. A.
, and
Schowalter
,
W. R.
, 1989,
Colloidal Dispersions
,
Cambridge University Press
,
Cambridge
.
27.
Batchelor
,
G. K.
, 1976, “
Brownian Diffusion of Particles With Hydrodynamic Interaction
,”
J. Fluid Mech.
0022-1120,
74
, pp.
1
29
.
28.
Dhont
,
J. K. G.
, 2004, “
Thermodiffusion of Interacting Colloids. I. A Statistical Thermodynamics Approach
,”
J. Chem. Phys.
0021-9606,
120
, pp.
1632
1641
.
29.
Dhont
,
J. K. G.
, 2004, “
Thermodiffusion of Interacting Colloids. II. A Microscopic Approach
,”
J. Chem. Phys.
0021-9606,
120
, pp.
1642
1653
.
30.
Jeffrey
,
D. J.
, 1973, “
Conduction Through a Random Suspension of Spheres
,”
Proc. R. Soc. London, Ser. A
1364-5021,
335
, pp.
355
367
.
31.
Batchelor
,
G. K.
, and
O’Brien
,
R. W.
, 1977, “
Thermal or Electrical Conduction Through a Granular Material
,”
Proc. R. Soc. London, Ser. A
1364-5021,
355
, pp.
313
333
.
32.
Hansen
,
J. P.
, and
McDonald
,
I. R.
, 1976,
Theory of Simple Liquids
,
Academic
,
New York
.
33.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
, 1959,
Fluid Mechanics
,
Pergamon
,
New York
.
34.
Zwanzig
,
R.
, 2001,
Nonequilibrium Statistical Mechanics
,
Oxford University Press
,
New York
.
35.
Hunter
,
R. J.
, 1981,
Zeta Potential in Colloid Science
,
Academic
New York
.
36.
Israelachvili
,
J.
, 1991,
Intermolecular and Surface Forces
,
Academic
,
New York
.
37.
Modi
,
H. J.
, and
Fuerstenau
,
D. W.
, 1957, “
Streaming Potential Studies on Corundum in Aqueous Solutions of Inorganic Electrolytes
,”
J. Phys. Chem.
0022-3654,
61
, pp.
640
643
.
38.
Karaman
,
M. E.
,
Pashley
,
R. M.
,
Waite
,
T. D.
,
Hatch
,
S. J.
, and
Bustamante
,
H.
, 1997, “
A Comparison of the Interaction Forces Between Model Alumina Surfaces and Their Colloidal Properties
,”
Colloids Surf., A
0927-7757,
129–130
, pp.
239
255
.
39.
Thompson
,
D. W.
, and
Collins
,
I. R.
, 1992, “
Electrical Properties of the Gold-Aqueous Solution Interface
,”
J. Colloid Interface Sci.
0021-9797,
152
, pp.
197
204
.
40.
Giesbers
,
M.
,
Kleijn
,
J. M.
, and
Cohen Stuart
,
M. A.
, 2002, “
The Electrical Double Layer on Gold Probed by Electrokinetic and Surface Force Measurements
,”
J. Colloid Interface Sci.
0021-9797,
248
, pp.
88
95
.
41.
Alexander
,
S.
,
Chaikin
,
P. M.
,
Grant
,
P.
,
Morales
,
G. J.
,
Pincus
,
P.
, and
Hone
,
D.
, 1984, “
Charge Renormalization, Osmotic Pressure, and Bulk Modulus of Colloidal Crystals: Theory
,”
J. Chem. Phys.
0021-9606,
80
, pp.
5776
5781
.
42.
Hansen
,
J. P.
, and
Lowen
,
H.
, 2000, “
Effective Interactions Between Electric Double Layers
,”
Annu. Rev. Phys. Chem.
0066-426X,
51
, pp.
209
242
.
43.
Monovoukas
,
Y.
, and
Ghast
,
A. P.
, 1989, “
The Experimental Phase Diagram of Charged Colloidal Suspensions
,”
J. Colloid Interface Sci.
0021-9797,
128
, pp.
533
548
.
44.
Mallamace
,
F.
,
Micali
,
N.
, and
Vasi
,
C.
, 1990, “
Viscoelastic Properties of Charged Colloids, Polystyrene, and Silica-Water Suspensions
,”
Phys. Rev. A
1050-2947,
42
, pp.
7304
7311
.
45.
Wette
,
P.
,
Schöpe
,
H. J.
, and
Palberg
,
T.
, 2002, “
Comparison of Colloidal Effective Charges From Different Experiments
,”
J. Chem. Phys.
0021-9606,
116
, pp.
10981
10988
.
46.
Tirado-Miranda
,
M.
,
Hiro-Pérez
,
C.
,
Quesada-Pérez
,
M.
,
Callejas-Fernández
,
J.
, and
Hidalgo-Álvarez
,
R.
, 2003, “
Effective Charges of Colloidal Particles Obtained From Collective Diffusion Experiments
,”
J. Colloid Interface Sci.
0021-9797,
263
, pp.
74
79
.
47.
Wilson
,
O. M.
,
Hu
,
X.
,
Cahill
,
D. G.
, and
Braun
,
P. V.
, 2002, “
Colloidal Metal Particles as Probes of Nanoscale Thermal Transport in Fluids
,”
Phys. Rev. B
0163-1829,
66
, p.
224301
.
48.
Ghe
,
Z.
,
Cahill
,
D. G.
, and
Braun
,
P. V.
, 2004, “
AuPd Metal Particles as Probes of Nanoscale Thermal Transport in Aqueous Solution
,”
J. Phys. Chem. B
1089-5647,
108
, pp.
18870
18875
(2004).
49.
Ghe
,
Z.
,
Cahill
,
D. G.
, and
Braun
,
P. V.
, 2006, “
Thermal Conductance of Hydrophilic and Hydrophobic Interfaces
,”
Phys. Rev. Lett.
0031-9007,
96
, p.
186101
.
50.
Hasselman
,
D. P. H.
, and
Johnson
,
L. F.
, 1987, “
Effective Thermal Conductivity of Composites With Interfacial Thermal Barrier Resistance
,”
J. Compos. Mater.
0021-9983,
21
, pp.
508
515
.
51.
Robbins
,
M. O.
,
Kremer
,
K.
, and
Grest
,
G. S.
, 1988, “
Phase Diagram and Dynamics of Yukawa Systems
,”
J. Chem. Phys.
0021-9606,
88
, pp.
3286
3312
.
52.
Härtl
,
W.
,
Versmold
,
H.
, and
Vittig
,
U.
, 1992, “
Fluidlike Ordered Colloidal Suspensions: The Influence of Electrolytes on the Structure Factor S(Q)
,”
Langmuir
0743-7463,
8
, pp.
2885
2888
.
53.
Crocker
,
J. C.
, and
Grier
,
D. G.
, 1994, “
Microscopic Measurement of the Pair Potential of Charge-Stabilized Colloid
,”
Phys. Rev. Lett.
0031-9007,
73
, pp.
352
355
.
54.
Hockney
,
R. W.
, and
Eastwood
,
J. W.
, 1988,
Computer Simulation Using Particles
,
IOP
,
Bristol
.
55.
Berendsen
,
H. J. C.
,
Postma
,
J. P. M.
,
van Gunsteren
,
W. F.
,
DiNola
,
A.
, and
Haak
,
J. R.
, 1984, “
Molecular Dynamics With Coupling to an External Bath
,”
J. Chem. Phys.
0021-9606,
81
, pp.
3684
3690
.
You do not currently have access to this content.