The heat transfer characteristics of silica (SiO2) nanofluids at 0.5vol% concentration and particle sizes of 10nm and 20nm in pool boiling with a suspended heating Nichrome wire have been analyzed. The influence of acidity on heat transfer has been studied. The pH value of the nanosuspensions is important from the point of view that it determines the stability of the particles and their mutual interactions toward the suspended heated wire. When there is no particle deposition on the wire, the nanofluid increases critical heat flux (CHF) by about 50% within the uncertainty limits regardless of pH of the base fluid or particle size. The extent of oxidation on the wire impacts CHF, and is influenced by the chemical composition of nanofluids in buffer solutions. The boiling regime is further extended to higher heat flux when there is agglomeration on the wire. This agglomeration allows high heat transfer through interagglomerate pores, resulting in a nearly threefold increase in burnout heat flux. This deposition occurs for the charged 10nm silica particle. The chemical composition, oxidation, and packing of the particles within the deposition on the wire are shown to be the reasons for the extension of the boiling regime and the net enhancement of the burnout heat flux.

1.
Choi
,
S. U. S.
, 1995,
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,
ASME
,
New York
, Vol.
66
, pp.
99
105
.
2.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
, 2003, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
567
574
.
3.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
, 2001, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
0003-6951,
78
, pp.
718
720
.
4.
Xuan
,
Y.
, and
Li
,
Q.
, 2000, “
Heat Transfer Enhancement in Nanofluids
,”
Int. J. Heat Fluid Flow
0142-727X,
21
, pp.
58
64
.
5.
Vassallo
,
P.
,
Kumar
,
R.
, and
D’Amico
,
S.
, 2004, “
Pool Boiling Heat Transfer Experiments in Silica-Water Nano-Fluids
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
407
411
.
6.
Milanova
,
D.
, and
Kumar
,
R.
, 2005, “
Role of Ions in Pool Boiling Heat Transfer of Pure and Silica Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
87
, p.
233107
.
7.
You
,
S. M.
,
Kim
,
J. H.
, and
Kim
,
K. H.
, 2003, “
Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
0003-6951,
83
, pp.
3374
3376
.
8.
Masuda
,
H.
,
Ebata
,
A.
,
Teramae
,
K.
, and
Hishinuma
,
N.
, 1993, “
Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersion of γ-Al2O3, SiO2, and TiO2 Ultra-Fine Particles)
,”
Netsu Bussei
0913-946X,
4
, pp.
227
233
.
9.
Lee
,
S.
,
Choi
,
S. U. S.
,
Li
,
S.
, and
Eastman
,
J. A.
, 1999, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
280
289
.
10.
Bhattacharya
,
P.
,
Saha
,
S. K.
,
Yadav
,
A.
,
Phelan
,
P. E.
, and
Prasher
,
R. S.
, 2004, “
Brownian Dynamics Simulation to Determine the Effective Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
0021-8979,
95
, pp.
6492
6494
.
11.
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
, 2002, “
Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
855
863
.
12.
Jana
,
N. R.
,
Chen
,
Y.
, and
Peng
,
X.
, 2004, “
Size- and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach
,”
Chem. Mater.
0897-4756,
16
, pp.
3931
3935
.
13.
Yu
,
W.
, and
Choi
,
S. U. S.
, 2003, “
The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model
,”
J. Nanopart. Res.
1388-0764,
5
, pp.
167
171
.
14.
Gupta
,
A.
,
Wu
,
X.
, and
Kumar
,
R.
, 2006, “
Possible Mechanisms for Thermal Conductivity Enhancement in Nanofluids
,” International Conference on Nanochannels, Microchannels and Minichannels, ICNMM2006,
Limerick, Ireland
, Jun. 19–21.
16.
Hwang
,
G.-S.
, and
Kaviany
,
M.
, 2006, “
Critical Heat Flux in Thin, Uniform Particle Coatings
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
4–5
), pp.
844
849
.
17.
Lyklema
,
J.
, 2000,
Fundamentals of Interface and Colloid Science
, Vol.
II
,
Academic
,
London
, pp.
3.2
3.42
.
You do not currently have access to this content.